書籍『ヘルスメンテナンスー病気のリスクを減らす10の習慣』出典

書籍
  1. 第1章 病気のリスクから目を背けさせる5つのバイアス
    1. 「今は大丈夫」でも、もしかしてー
    2. バイアス①「年だから仕方ない」と思い込むー「年齢」バイアス
    3. バイアス②リスクを高める行動の影響は、遅れてやってくるー「タイムラグ」バイアス
    4. バイアス③その瞬間の心地よさに“誘惑”されるー「快楽」バイアス
    5. バイアス④人と比べ、引き合いに出すことで安心するー「比較・同調」バイアス
    6. バイアス⑤「A判定」の診断結果に気が緩むー「異常なし」バイアス
  2. 第2章 「病気のリスク」と「行動」の切り離せない関係
    1. 「病気と行動」は想像以上に複雑に絡み合っている
      1. 図①・②出典
      2. 図③出典
    2. 病気は想像以上に身近にあるー誰もが予備群候補生?!
      1. 図④出典
      2. 図⑤出典
    3. 病気が「見えてくる」のは40代からー診断された時=早期ではない
      1. 図⑥出典
    4. 病気の「その先にあるもの」にも目を向ける
      1. 図⑦出典
      2. 図⑧出典
  3. 第3章 病気のリスクを減らす10の習慣
    1. 普段の行動の見直しが、病気のリスクを引き下げる
      1. 図⑨出典
    2. 習慣① 喫煙ーたばこの煙・蒸気と距離をとる
      1. 図⑩・⑪出典
    3. 習慣② 体重管理ー「適正な体重&お腹周り」をキープする
      1. 図⑬出典
    4. 習慣③ 食事ー「食塩を控えた健康的な食」を心がける
      1. 図⑭出典
      2. 図⑮出典
    5. 習慣④ 身体活動ー座る時間を減らし、動く時間を増やす
      1. 図⑯出典
      2. 図⑰出典
    6. 習慣⑤ 飲酒ー飲まない、飲んでも、控えめに
      1. 図⑱出典
    7. 習慣⑥ 睡眠ー短すぎず、長すぎない良質な眠りを
    8. 習慣⑦ 日光対策ー日焼け対策をしつつ、日に当たる
    9. 習慣⑧ 口腔ケアーむし歯・歯周病をできるだけ減らす
      1. 図⑲出典
    10. 習慣⑨ 温度対策ー「気温」を意識して、暮らす
    11. 習慣⑩ 予防接種ー状況に応じて、接種を考える
      1. 図⑳出典
    12. 10の習慣がもたらす「付加価値」とは
    13. 「10の習慣」にも限界はある。でもー

第1章 病気のリスクから目を背けさせる5つのバイアス

「今は大丈夫」でも、もしかしてー

健康意識に関する調査. 厚生労働省. 2014; published online Aug. https://www.mhlw.go.jp/stf/houdou/0000052548.html (accessed May 23, 2024).

バイアス①「年だから仕方ない」と思い込むー「年齢」バイアス

WHO Study on global AGEing and adult health (SAGE). World Health Organization. https://www.who.int/data/data-collection-tools/study-on-global-ageing-and-adult-health (accessed May 23, 2024).

Angulo J, El Assar M, Álvarez-Bustos A, Rodríguez-Mañas L. Physical activity and exercise: Strategies to manage frailty. Redox Biol 2020; 35: 101513.

Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 2017; 16: 624–33.

変形性膝関節症診療ガイドライン2023 監修 日本整形外科学会、編集 日本整形外科学会診療ガイドライン委員会、変形性膝関節症診療ガイドライン策定委員会 https://minds.jcqhc.or.jp/common/wp-content/plugins/pdfjs-viewer-shortcode/pdfjs/web/viewer.php?file=https://minds.jcqhc.or.jp/common/summary/pdf/c00793.pdf&dButton=false&pButton=false&oButton=false&sButton=true#zoom=auto&pagemode=none&_wpnonce=3b871a512b(accessed May 23, 2024).

Van den Bulck J. Adolescent use of mobile phones for calling and for sending text messages after lights out: results from a prospective cohort study with a one-year follow-up. Sleep 2007; 30: 1220–3.

Munezawa T, Kaneita Y, Osaki Y, et al. The association between use of mobile phones after lights out and sleep disturbances among Japanese adolescents: a nationwide cross-sectional survey. Sleep 2011; 34: 1013–20.

Exelmans L, Van den Bulck J. Bedtime mobile phone use and sleep in adults. Soc Sci Med 2016; 148: 93–101.

Carter B, Rees P, Hale L, Bhattacharjee D, Paradkar MS. Association Between Portable Screen-Based Media Device Access or Use and Sleep Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr 2016; 170: 1202–8.

Moustakbal M, Maataoui SB. A cross-sectional study on sleep length, quality, and mobile phone use among Moroccan adolescents. Pan Afr Med J 2022; 41: 252.

Joshi SC. Sleep latency and sleep disturbances mediates the association between nighttime cell phone use and psychological well-being in college students. Sleep Biol Rhythms 2022; 20: 431–43.

AlShareef SM. The impact of bedtime technology use on sleep quality and excessive daytime sleepiness in adults. Sleep Sci 2022; 15: 318–27.

Taylor CR, Stern RS, Leyden JJ, Gilchrest BA. Photoaging/photodamage and photoprotection. J Am Acad Dermatol 1990; 22: 1–15.

Jenkins G. Molecular mechanisms of skin ageing. 2002 www.elsevier.com/locate/mechagedev.

Gilchrest BA. Skin aging and photoaging: An overview. J Am Acad Dermatol 1989; 21: 610–3.

Shanbhag S, Nayak A, Narayan R, Nayak UY. Anti-aging and Sunscreens: Paradigm Shift in Cosmetics. Adv Pharm Bull 2019; 9: 348–59.

バイアス②リスクを高める行動の影響は、遅れてやってくるー「タイムラグ」バイアス

Pleasants RA, Rivera MP, Tilley SL, Bhatt SP. Both Duration and Pack-Years of Tobacco Smoking Should Be Used for Clinical Practice and Research. Ann Am Thorac Soc 2020; 17: 804–6.

Tindle HA, Stevenson Duncan M, Greevy RA, et al. Lifetime Smoking History and Risk of Lung Cancer: Results From the Framingham Heart Study. J Natl Cancer Inst 2018; 110: 1201–7.

Toumazis I, Bastani M, Han SS, Plevritis SK. Risk-Based lung cancer screening: A systematic review. Lung Cancer 2020; 147: 154–86.

Varghese J, Dakhode S. Effects of Alcohol Consumption on Various Systems of the Human Body: A Systematic Review. Cureus 2022; 14: e30057.

Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DAT. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis 2009; 9: 291–300.

Allan GM, Arroll B. Prevention and treatment of the common cold: making sense of the evidence. CMAJ 2014; 186: 190–9.

インフルエンザ 一般社団法人 日本呼吸器学会 https://www.jrs.or.jp/citizen/disease/a/a-01.html(accessed May 23, 2024).

SARS-CoV-2の変異株B.1.1.529系統(オミクロン株)の発症間隔の推定:暫定報告 https://www.niid.go.jp/niid/ja/2019-ncov/2551-cepr/10952-b11529-si.html#:~:text=%E3%81%A6%E6%8E%A8%E5%AE%9A%E3%81%97%E3%81%9F%E3%80%82-,%E7%99%BA%E7%97%87%E9%96%93%E9%9A%94%E3%81%AE%E4%B8%AD%E5%A4%AE%E5%80%A4%E3%81%AF2.6%E6%97%A5%EF%BC%8895%EF%BC%85,%E6%80%A7%E3%81%8C%E7%A4%BA%E5%94%86%E3%81%95%E3%82%8C%E3%82%8B%E3%80%82(accessed May 23, 2024).

Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5: e2228008.

Lebovitz HE: Management of hyperglycemia with oral antihypoglycemic agents in type2 diabetes. In Joslin’s Diabetes Mellitus 14th Ed. pp687-710 Lippincott Williams & Wilkins 2005.

Kendall DM, Cuddihy RM, Bergenstal RM. Clinical Application of Incretin-Based Therapy: Therapeutic Potential, Patient Selection and Clinical Use. American Journal of Medicine 2009; 122. DOI:10.1016/j.amjmed.2009.03.015.

Lu Y, Pechlaner R, Cai J, et al. Trajectories of Age-Related Arterial Stiffness in Chinese Men and Women. J Am Coll Cardiol 2020; 75: 870–80.

Ibanez B, Fernández-Ortiz A, Fernández-Friera L, García-Lunar I, Andrés V, Fuster V. Progression of Early Subclinical Atherosclerosis (PESA) Study: JACC Focus Seminar 7/8. J Am Coll Cardiol 2021; 78: 156–79.

Ahmadi A, Argulian E, Leipsic J, Newby DE, Narula J. From Subclinical Atherosclerosis to Plaque Progression and Acute Coronary Events: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 74: 1608–17.

Skyler JS, Bakris GL, Bonifacio E, et al. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes 2017; 66: 241–55.

Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Méneur C, Bernal-Mizrachi E. Natural history of β-cell adaptation and failure in type 2 diabetes. Mol Aspects Med 2015; 42: 19–41.

日本糖尿病学会・日本糖尿病協会合同 アドボカシー活動 https://www.nittokyo.or.jp/modules/about/index.php?content_id=46(accessed May 23, 2024).

2023年改訂版 冠動脈疾患の一次予防に関する診療ガイドライン 一般社団法人 日本循環器学会 https://www.j-circ.or.jp/cms/wp-content/uploads/2023/03/JCS2023_fujiyoshi.pdf(accessed May 23, 2024).

バイアス③その瞬間の心地よさに“誘惑”されるー「快楽」バイアス

Wise RA, Robble MA. Dopamine and Addiction. Annu Rev Psychol 2020; 71: 79–106.

Lewis RG, Florio E, Punzo D, Borrelli E. The Brain’s Reward System in Health and Disease. Adv Exp Med Biol 2021; 1344: 57–69.

Swanson JA, Lee JW, Hopp JW, Berk LS. The impact of caffeine use on tobacco cessation and withdrawal. Addictive behaviors 1997; 22: 55–68.

Bordoni B, Marelli F, Bordoni G. A review of analgesic and emotive breathing: a multidisciplinary approach. J Multidiscip Healthc 2016; 9: 97–102.

Marques A, Marconcin P, Werneck AO, et al. Bidirectional Association between Physical Activity and Dopamine Across Adulthood-A Systematic Review. Brain Sci 2021; 11. DOI:10.3390/brainsci11070829.

バイアス④人と比べ、引き合いに出すことで安心するー「比較・同調」バイアス

Wagner K-H, Brath H. A global view on the development of non communicable diseases. Prev Med (Baltim) 2012; 54 Suppl: S38-41.

Fuller J. Universal etiology, multifactorial diseases and the constitutive model of disease classification. Stud Hist Philos Biol Biomed Sci 2018; 67: 8–15.

Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13. DOI:10.3390/nu13082830.

Noncommunicable diseases WHO https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases(accessed May 23, 2024).

バイアス⑤「A判定」の診断結果に気が緩むー「異常なし」バイアス

健診・検診の考え方と特定健康診査における健診項目の位置づけについて 厚生労働省 https://www.mhlw.go.jp/file/05-Shingikai-10901000-Kenkoukyoku-Soumuka/0000124143.pdf(accessed May 24, 2024).

最新の科学的知見に基づいた保健事業に係る調査研究 厚生労働科学研究費補助金 行政政策研究分野 厚生労働科学特別研究 https://mhlw-grants.niph.go.jp/project/9261(accessed May 24, 2024).

中 山 健 夫 健診・保健指導の有効性に関する考察 日循予防誌 第42巻 第2号(2007年11月)https://www.jstage.jst.go.jp/article/jjcdp2001/42/2/42_2_124/_pdf(accessed May 24, 2024).

Kherad O, Carneiro AV, Choosing wisely working group of the European Federation of Internal Medicine. General health check-ups: To check or not to check? A question of choosing wisely. Eur J Intern Med 2023; 109: 1–3.

Krogsbøll LT, Jørgensen KJ, Gøtzsche PC. General health checks in adults for reducing morbidity and mortality from disease. Cochrane Database Syst Rev 2019; 1: CD009009.

Birtwhistle R, Bell NR, Thombs BD, Grad R, Dickinson JA. Periodic preventive health visits: a more appropriate approach to delivering preventive services: From the Canadian Task Force on Preventive Health Care. Can Fam Physician 2017; 63: 824–6.

Bulliard J-L, Chiolero A. Screening and overdiagnosis: public health implications. Public Health Rev 2015; 36: 8.

Moynihan R, Doust J, Henry D. Preventing overdiagnosis: how to stop harming the healthy. BMJ 2012; 344: e3502.

Lu J. Ningen Dock: Japan’s unique comprehensive health checkup system for early detection of disease. Glob Health Med 2022; 4: 9–13.

Liss DT, Uchida T, Wilkes CL, Radakrishnan A, Linder JA. General Health Checks in Adult Primary Care: A Review. JAMA 2021; 325: 2294–306.

第2章 「病気のリスク」と「行動」の切り離せない関係

「病気と行動」は想像以上に複雑に絡み合っている

Prevalence and incidence of rare diseases:  Bibliographic data. Orphanet. 2022; published online Jan. https://www.orpha.net/consor/cgi-bin/Education_Home.php?lng=EN (accessed May 24, 2024).

Dawkins HJS, Draghia-Akli R, Lasko P, et al. Progress in Rare Diseases Research 2010-2016: An IRDiRC Perspective. Clin Transl Sci 2018; 11: 11–20.

図①・②出典

人口動態調査. 厚生労働省. https://www.mhlw.go.jp/toukei/list/81-1a.html (accessed May 24, 2024).

令和2年(2020)人口動態統計(確定数)の概況. 厚生労働省. 2022. https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/kakutei20/index.html (accessed May 24, 2024).

令和3年(2021)人口動態統計(確定数)の概況. 厚生労働省. 2023. https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/kakutei21/index.html (accessed May 24, 2024).

介護保険制度の概要. 厚生労働省. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/hukushi_kaigo/kaigo_koureisha/gaiyo/index.html (accessed May 24, 2024).

国民生活基礎調査. 厚生労働省. https://www.mhlw.go.jp/toukei/list/20-21.html (accessed May 24, 2024).

国民生活基礎調査の概況 Ⅳ 介護の状況. 厚生労働省. 2020. https://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa19/dl/05.pdf (accessed May 24, 2024).

国民生活基礎調査の概況 Ⅲ 世帯員の健康状況. 厚生労働省. 2020. https://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa19/dl/04.pdf (accessed May 24, 2024).

Rains JC, Davis RE, Smitherman TA. Tension-type headache and sleep. Curr Neurol Neurosci Rep 2015; 15: 520.

Hagen K, Åsberg AN, Stovner L, et al. Lifestyle factors and risk of migraine and tension-type headache. Follow-up data from the Nord-Trøndelag Health Surveys 1995-1997 and 2006-2008. Cephalalgia 2018; 38: 1919–26.

Sullivan DP, Martin PR, Boschen MJ. Psychological Sleep Interventions for Migraine and Tension-Type Headache: A Systematic Review and Meta-Analysis. Sci Rep 2019; 9: 6411.

Robblee J, Starling AJ. SEEDS for success: Lifestyle management in migraine. Cleve Clin J Med 2019; 86: 741–9.

Andrijauskis D, Ciauskaite J, Vaitkus A, Pajediene E. Primary Headaches and Sleep Disturbances: A Cause or a Consequence? J Oral Facial Pain  Headache 2020; 34: 61–66.

Fernández-de-Las-Peñas C, Florencio LL, Plaza-Manzano G, Arias-Buría JL. Clinical Reasoning Behind Non-Pharmacological Interventions for the Management of Headaches: A Narrative Literature Review. Int J Environ Res Public Health 2020; 17. DOI:10.3390/ijerph17114126.

Rivera-Mancilla E, Al-Hassany L, Villalón CM, MaassenVanDenBrink A. Metabolic Aspects of Migraine: Association With Obesity and Diabetes Mellitus. Front Neurol 2021; 12: 686398.

Agbetou M, Adoukonou T. Lifestyle Modifications for Migraine Management. Front Neurol 2022; 13: 719467.

脳卒中レジストリを用いた我が国の脳卒中診療実態の把握(日本脳卒中データバンク)」報告書 2022年https://strokedatabank.ncvc.go.jp/f12kQnRl/wp-content/uploads/%E6%97%A5%E6%9C%AC%E8%84%B3%E5%8D%92%E4%B8%AD%E3%83%87%E3%83%BC%E3%82%BF%E3%83%90%E3%83%B3%E3%82%AF%E5%A0%B1%E5%91%8A%E6%9B%B82022%E5%B9%B4_FIX.pdf (accessed May 24, 2024).

Sarikaya H, Ferro J, Arnold M. Stroke prevention–medical and lifestyle measures. Eur Neurol 2015; 73: 150–7.

Pandian JD, Gall SL, Kate MP, et al. Prevention of stroke: a global perspective. Lancet 2018; 392: 1269–78.

Caprio FZ, Sorond FA. Cerebrovascular Disease: Primary and Secondary Stroke Prevention. Medical Clinics of North America. 2019; 103: 295–308.

「認知症疾患診療ガイドライン」作成委員会, editor. 認知症疾患診療ガイドライン2017  . 医学書院 https://www.neurology-jp.org/guidelinem/degl/degl_2017_01.pdf (accessed May 24, 2024).

WHOガイドライン『認知機能低下および認知症のリスク低減』邦訳検討委員会. 認知機能低下および認知症のリスク低減 WHOガイドライン. 令和元年度 厚生労働省老人保健健康増進等事業「海外認知症予防ガイドラインの整理に関する調査研究事業」 https://www.jri.co.jp/MediaLibrary/file/column/opinion/detail/20200410_theme_t22.pdf (accessed May 24, 2024).

Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. The Lancet. 2017; 390: 2673–734.

Ushigome R, Sakata Y, Nochioka K, et al. Temporal trends in clinical characteristics, management and prognosis of patients with symptomatic heart failure in Japan — report from the CHART Studies. Circ J 2015; 79: 2396–407.

日本循環器学会, 日本心不全学会, editors. 心筋症診療ガイドライン(2018年改訂版), 更新版. 2021 https://www.j-circ.or.jp/cms/wp-content/uploads/2018/08/JCS2018_tsutsui_kitaoka.pdf (accessed May 24, 2024).

急性冠症候群ガイドライン(2018年改訂版), 更新版. 日本循環器学会, 2022 https://www.j-circ.or.jp/cms/wp-content/uploads/2018/11/JCS2018_kimura.pdf (accessed May 24, 2024).

冠動脈疾患の一次予防に関する診療ガイドライン, 2023年改訂版. 日本循環器学会, 2023 https://www.j-circ.or.jp/cms/wp-content/uploads/2023/03/JCS2023_fujiyoshi.pdf (accessed May 24, 2024).

日本循環器学会, 日本心不全学会, editors. 2021年 JCS/JHFSガイドライン 急性・慢性心不全診療, フォーカスアップデート版. 2021 https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf (accessed May 24, 2024).

Reamy B V., Williams PM, Kuckel DP. Prevention of Cardiovascular Disease. Primary Care – Clinics in Office Practice. 2018; 45: 25–44.

Oh T, Kim D, Lee S, et al. Machine learning-based diagnosis and risk factor analysis of cardiocerebrovascular disease based on KNHANES. Sci Rep 2022; 12: 2250.

日本循環器学会, 日本心臓血管外科学会, 日本胸部外科学会, 日本血管外科学会, editors. 大動脈瘤・大動脈解離診療ガイドライン, 2020年改訂版. 2020 https://www.j-circ.or.jp/cms/wp-content/uploads/2020/07/JCS2020_Ogino.pdf (accessed May 24, 2024).

肝臓病の理解のために . 一般社団法人日本肝臓学会, 2020 https://www.jsh.or.jp/lib/files/citizens/booklet/understanding_liver_disease.pdf (accessed May 24, 2024).

令和2年(2020)患者調査の概況. 厚生労働省. https://www.mhlw.go.jp/toukei/saikin/hw/kanja/20/dl/toukei.pdf (accessed May 24, 2024).

Morizane Y, Morimoto N, Fujiwara A, et al. Incidence and causes of visual impairment in Japan: the first nation-wide complete enumeration survey of newly certified visually impaired individuals. Jpn J Ophthalmol 2019; 63: 26–33.

科学的根拠(evidence)に基づく 白内障診療ガイドラインの策定に関する研究. 2002 厚生科学研究費補助金 健康安全確保総合研究分野 医療技術評価総合研究事業 https://mhlw-grants.niph.go.jp/project/5031, https://mhlw-grants.niph.go.jp/system/files/2000/000156/200001150A/200001150A0001.pdf (accessed May 24, 2024).

Prokofyeva E, Wegener A, Zrenner E. Cataract prevalence and prevention in Europe: a literature review. Acta Ophthalmol 2013; 91: 395–405.

Modenese A, Korpinen L, Gobba F. Solar Radiation Exposure and Outdoor Work: An Underestimated Occupational Risk. Int J Environ Res Public Health 2018; 15. DOI:10.3390/ijerph15102063.

日本緑内障学会緑内障診療ガイドライン改訂委員会. 緑内障診療ガイドライン(第5版). 日本眼科学会雑誌 2021; 126. https://www.ryokunaisho.jp/guidelines/data/5_guidelines_all (accessed May 24, 2024).

Coleman AL, Miglior S. Risk Factors for Glaucoma Onset and Progression. Surv Ophthalmol 2008; 53. DOI:10.1016/j.survophthal.2008.08.006.

Gupta D, Chen PP. Glaucoma. Am Fam Physician 2016; 93: 668–74.

Al-Zamil WM, Yassin SA. Recent developments in age-related macular degeneration: a review. Clin Interv Aging 2017; 12: 1313–30.

Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. 2018 www.thelancet.com.

第2回 永久歯の抜歯原因調査. 平成30年11月 公益財団法人8020推進財団https://www.8020zaidan.or.jp/pdf/document-tooth-extraction-investigation-2nd.pdf (accessed May 24, 2024).

歯周治療のガイドライン2022 . 特定非営利活動法人 日本歯周病学会 https://www.perio.jp/publication/upload_file/guideline_perio_2022.pdf (accessed May 24, 2024).

う蝕治療ガイドライン , 第3版. 特定非営利活動法人 日本歯科保存学会http://www.hozon.or.jp/member/publication/guideline/file/guideline_2020.pdf (accessed May 24, 2024).

Furuta M, Takeuchi K, Takeshita T, et al. 10-year trend of tooth loss and associated factors in a Japanese population-based longitudinal study. BMJ Open 2021; 11: e048114.

Saito M, Shimazaki Y, Fukai K, et al. Risk factors for tooth loss in adult Japanese dental patients: 8020 Promotion Foundation Study. J Investig Clin Dent 2019; 10: e12392.

Kawahara H, Inoue M, Okura K, Oshima M, Matsuka Y. Risk Factors for Tooth Loss in Patients Undergoing Mid-Long-Term Maintenance: A Retrospective Study. Int J Environ Res Public Health 2020; 17. DOI:10.3390/ijerph17176258.

Inoue Y, Zaitsu T, Akiko O, et al. Association between exposure to secondhand smoking at home and tooth loss in Japan: A cross-sectional analysis of data from the 2016 National Health and Nutrition Survey. Tob Induc Dis 2021; 19: 96.

関 雅文. 成人肺炎診療ガイドライン2017のポイントと課題―最近のインフルエンザ診療の考え方も含めて―. 日本呼吸ケア・リハビリテーション学会誌 2019; 28: 174–8.

Mandell LA, Niederman MS. Aspiration Pneumonia. New England Journal of Medicine 2019; 380: 651–63.

Rodriguez AE, Restrepo MI. New perspectives in aspiration community acquired Pneumonia. Expert Rev Clin Pharmacol. 2019; 12: 991–1002.

Ferreira-Coimbra J, Sarda C, Rello J. Burden of Community-Acquired Pneumonia and Unmet Clinical Needs. Adv Ther 2020; 37: 1302–18.

López-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology 2016; 21: 14–23.

Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med 2017; 195: 557–82.

Mirza S, Clay RD, Koslow MA, Scanlon PD. COPD Guidelines: A Review of the 2018 GOLD Report. Mayo Clin Proc. 2018; 93: 1488–502.

統計調査委員会. 2021年末の慢性透析患者に関する集計 第2章 2021年慢性透析患者の動態. 一般社団法人 日本透析医学会. 2021. https://docs.jsdt.or.jp/overview/file/2021/pdf/02.pdf (accessed May 24, 2024).

腎疾患対策検討会報告書 〜腎疾患対策の更なる推進を目指して〜. 2018  腎疾患対策検討会. https://www.mhlw.go.jp/content/10901000/000332759.pdf (accessed May 24, 2024).

Kelly JT, Su G, Zhang L, et al. Modifiable Lifestyle Factors for Primary Prevention of CKD: A Systematic Review and Meta-Analysis. J Am Soc Nephrol 2021; 32: 239–53.

Wakasugi M, Kazama JJ, Yamamoto S, Kawamura K, Narita I. A combination of healthy lifestyle factors is associated with a decreased incidence of chronic kidney disease: a population-based cohort study. Hypertens Res 2013; 36: 328–33.

Wakasugi M, Kazama J, Narita I, et al. Association between Overall Lifestyle Changes and the Incidence of Proteinuria: A Population-based, Cohort Study. Intern Med 2017; 56: 1475–84.

Zhu Y, Bu Y, Zhang G, et al. Association of physical activity with chronic kidney disease: a systematic review and dose-response meta-analysis. Aging 2020; 12: 19221–32.

腰痛診療ガイドライン2019 , 改訂第2版 日本整形外科学会診療ガイドライン委員会, 腰痛診療ガイドライン策定委員会 https://minds.jcqhc.or.jp/common/wp-content/plugins/pdfjs-viewer-shortcode/pdfjs/web/viewer.php?file=https://minds.jcqhc.or.jp/common/summary/pdf/c00498.pdf&dButton=false&pButton=false&oButton=false&sButton=true#zoom=auto&pagemode=none&_wpnonce=3b871a512b, https://minds.jcqhc.or.jp/summary/c00498/(accessed May 24, 2024).

理学療法ガイドライン 4.肩関節周囲炎, 第1版. 公益社団法人 日本理学療法士協会 https://www.jspt.or.jp/upload/jspt/obj/files/guideline/10_shoulder_periarthritis.pdf (accessed May 24, 2024).

Li W, Lu N, Xu H, Wang H, Huang J. Case control study of risk factors for frozen shoulder in China. Int J Rheum Dis 2015; 18: 508–13.

Le H V, Lee SJ, Nazarian A, Rodriguez EK. Adhesive capsulitis of the shoulder: review of pathophysiology and current clinical treatments. Shoulder Elbow 2017; 9: 75–84.

Kingston K, Curry EJ, Galvin JW, Li X. Shoulder adhesive capsulitis: epidemiology and predictors of surgery. J Shoulder Elbow Surg 2018; 27: 1437–43.

Wang J-Y, Liaw C-K, Huang C-C, Liou T-H, Lin H-W, Huang S-W. Hyperlipidemia Is a Risk Factor of Adhesive Capsulitis: Real-World Evidence Using the Taiwanese National Health Insurance Research Database. Orthop J Sports Med 2021; 9: 2325967120986808.

変形性膝関節症の管理に関するOARSI勧告 OARSIによるエビデンスに基づくエキスパートコンセンサスガイドライン. 日本内科学会雑誌 2017; 106: 75–83.

理学療法ガイドライン 5.変形性膝関節症, 第1版. 公益社団法人 日本理学療法士協会 https://www.jspt.or.jp/upload/jspt/obj/files/guideline/11_gonarthrosis.pdf (accessed May 24, 2024).

Roos EM, Arden NK. Strategies for the prevention of knee osteoarthritis. Nat Rev Rheumatol. 2016; 12: 92–101.

日本整形外科学会診療ガイドライン委員会, 変形性股関節症診療ガイドライン策定委員会, editors. 変形性股関節症診療ガイドライン2016, 改訂第2版. 南江堂, 2016 https://minds.jcqhc.or.jp/common/wp-content/plugins/pdfjs-viewer-shortcode/pdfjs/web/viewer.php?file=https://minds.jcqhc.or.jp/common/summary/pdf/c00322.pdf&dButton=false&pButton=false&oButton=false&sButton=true#zoom=auto&pagemode=none&_wpnonce=3b871a512b, https://minds.jcqhc.or.jp/summary/c00322/(accessed May 24, 2024).

Neogi T, Zhang Y. Osteoarthritis prevention. Curr Opin Rheumatol 2011; 23: 185–91.

de Melo LR, Hunter D, Fortington L, et al. National Osteoarthritis Strategy brief report: Prevention of osteoarthritis. Aust J Gen Pract 2020; 49: 272–5.

Whittaker JL, Runhaar J, Bierma-Zeinstra S, Roos EM. A lifespan approach to osteoarthritis prevention. Osteoarthritis Cartilage 2021; 29: 1638–53.

Runhaar J, Bierma-Zeinstra SMA. The Challenges in the Primary Prevention of Osteoarthritis. Clin Geriatr Med 2022; 38: 259–71.

Moncada LVV, Mire LG. Preventing Falls in Older Persons. Am Fam Physician 2017; 96: 240–7.

WHO global report on falls prevention in older age. 2008 https://www.who.int/publications/i/item/9789241563536 (accessed May 24, 2024).

Step Safely: Strategies for preventing and managing falls across the life-course. 2021 WHO https://www.who.int/publications/i/item/978924002191-4 (accessed May 24, 2024).

Sherrington C, Michaleff ZA, Fairhall N, et al. Exercise to prevent falls in older adults: an updated systematic review and meta-analysis. Br J Sports Med 2017; 51: 1750–8.

Janelle M G-B, Yvonne L M, Leslie A P, Erin L C, Tracy L B, Jamie H T. Interventions to Prevent Falls in Community-Dwelling Older Adults: A Systematic Review for the U.S. Preventive Services Task Force [Internet]. 2018.

Gillespie LD, Robertson MC, Gillespie WJ, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 2012; 2012: CD007146.

El-Khoury F, Cassou B, Charles M-A, Dargent-Molina P. The effect of fall prevention exercise programmes on fall induced injuries in community dwelling older adults: systematic review and meta-analysis of randomised controlled trials. BMJ 2013; 347: f6234.

科学的根拠に基づくがんリスク評価とがん予防ガイドライン提言に関する研究. 国立研究開発法人 国立がん研究センター . https://epi.ncc.go.jp/can_prev/ (accessed May 24, 2024).

Anand P, Kunnumakkara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25: 2097–116.

Vineis P, Wild CP. Global cancer patterns: Causes and prevention. The Lancet. 2014; 383: 549–57.

Schüz J, Espina C, Villain P, et al. European Code against Cancer 4th Edition: 12 ways to reduce your cancer risk. Cancer Epidemiol 2015; 39 Suppl 1: S1-10.

Di Giuseppe G, Pelullo CP, Mitidieri M, Lioi G, Pavia M. Cancer Prevention: Knowledge, Attitudes and Lifestyle Cancer-Related Behaviors among Adolescents in Italy. Int J Environ Res Public Health 2020; 17. DOI:10.3390/ijerph17228294.

特定非営利活動法人日本高血圧学会, 特定非営利活動法人日本高血圧協会, 認定特定非営利活動法人ささえあい医療人権センターCOML, editors. 一般向け「高血圧治療ガイドライン2019」解説冊子 高血圧の話. 特定非営利活動法人日本高血圧学会, 2019 https://www.jpnsh.jp/data/jsh2019_gen.pdf (accessed May 24, 2024).

Campbell NRC, Niebylski ML. Prevention and control of hypertension: Developing a global agenda. Curr Opin Cardiol. 2014; 29: 324–30.

Valenzuela PL, Carrera-Bastos P, Gálvez BG, et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol. 2021; 18: 251–75.

Lv Y, Jiang G, Tan X, Bao W, Chen L, Liu L. Association of Sleep Patterns and Lifestyles With Incident Hypertension: Evidence From a Large Population-Based Cohort Study. Front Cardiovasc Med 2022; 9: 847452.

動脈硬化性疾患予防ガイドライン2022年版, 2022年版. 一般社団法人 日本動脈硬化学会, 2022 https://www.j-athero.org/jp/wp-content/uploads/publications/pdf/GL2022_s/jas_gl2022_220713.pdf (accessed May 24, 2024).

Na X, Chen Y, Ma X, et al. Relations of Lifestyle Behavior Clusters to Dyslipidemia in China: A Compositional Data Analysis. Int J Environ Res Public Health 2021; 18. DOI:10.3390/ijerph18157763.

Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41: 111–88.

Shubrook JH, Chen W, Lim A. Evidence for the Prevention of Type 2 Diabetes Mellitus. J Am Osteopath Assoc 2018; 118: 730–7.

Taylor R, Valabhji J, Aveyard P, Paul D. Prevention and reversal of Type 2 diabetes: highlights from a symposium at the 2019 Diabetes UK Annual Professional Conference. Diabetic Medicine. 2019; 36: 359–65.

図③出典

高血圧の話 一般向け「高血圧治療ガイドライン2019」解説冊子 特定非営利活動法人日本高血圧学会 特定非営利活動法人日本高血圧協会認定特定非営利活動法人ささえあい医療人権センターCOML 編 https://www.jpnsh.jp/data/jsh2019_gen.pdf(accessed May 24, 2024).

高血圧治療ガイドライン2019 図1-6 日本高血圧学会高血圧治療ガイドライン作成委員会 編、日本高血圧学会 発行 https://www.jpnsh.jp/data/jsh2019/JSH2019_noprint.pdf (accessed May 24, 2024).

平成18年国民健康・栄養調査報告 結果の概要 第4部 生活習慣病等の状況 厚生労働省 https://www.mhlw.go.jp/bunya/kenkou/eiyou08/dl/01-kekka.pdf(accessed May 24, 2024).

平成28年 国民健康・栄養調査 厚生労働省 https://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h28-houkoku-03.pdf(accessed May 24, 2024).

令和2年 患者調査の概況 総患者数 傷病分類別 厚生労働省 https://www.mhlw.go.jp/toukei/saikin/hw/kanja/20/index.html(accessed May 24, 2024).

令和2年 全国がん登録 罹患数・率 報告 CANCER INCIDENCE OF JAPAN 2020  厚生労働省健康・生活衛生局がん・疾病対策課 https://www.mhlw.go.jp/content/10900000/001231386.pdf(accessed May 24, 2024).

令和5年度老人保健事業推進費等補助金(老人保健健康増進等事業分)「認知症及び軽度認知障害の有病率調査並びに将来推計に関する研究」国立大学法人 九州大学 https://www.eph.med.kyushu-u.ac.jp/jpsc/uploads/resmaterials/0000000111.pdf?1715072186 (accessed May 24, 2024).

病気は想像以上に身近にあるー誰もが予備群候補生?!

図④出典

Kadomatsu Y, Tsukamoto M, Sasakabe T, et al. A risk score predicting new incidence of hypertension in Japan. J Hum Hypertens 2019; 33: 748–55.

Nanri A, Nakagawa T, Kuwahara K, et al. Correction: Development of Risk Score for Predicting 3-Year Incidence of Type 2 Diabetes: Japan Epidemiology Collaboration on Occupational Health Study. PLoS One 2018; 13: e0199075.

Nanri A, Nakagawa T, Kuwahara K, et al. Development of Risk Score for Predicting 3-Year Incidence of Type 2 Diabetes: Japan Epidemiology Collaboration on Occupational Health Study. PLoS One 2015; 10: e0142779.

Honda T, Chen S, Hata J, et al. Development and Validation of a Risk Prediction Model for Atherosclerotic Cardiovascular Disease in Japanese Adults: The Hisayama Study. J Atheroscler Thromb 2022; 29: 345–61.

Sasazuki S, Inoue M, Iwasaki M, et al. Combined impact of five lifestyle factors and subsequent risk of cancer: The Japan Public Health Center Study. Prev Med (Baltim) 2012; 54: 112–6.

Honda T, Ohara T, Yoshida D, et al. Development of a dementia prediction model for primary care: The Hisayama Study. Alzheimers Dement (Amst) 2021; 13: e12221.

図⑤出典

GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1223–49.

病気が「見えてくる」のは40代からー診断された時=早期ではない

図⑥出典

令和2年 患者調査の概況 厚生労働省 https://www.mhlw.go.jp/toukei/saikin/hw/kanja/20/index.html(accessed May 24, 2024).

病気の「その先にあるもの」にも目を向ける

Johnston MC, Crilly M, Black C, Prescott GJ, Mercer SW. Defining and measuring multimorbidity: A systematic review of systematic reviews. Eur J Public Health 2019; 29: 182–9.

Rajoo SS, Wee ZJ, Lee PSS, Wong FY, Lee ES. A Systematic Review of the Patterns of Associative Multimorbidity in Asia. Biomed Res Int 2021; 2021: 6621785.

Ho IS-S, Azcoaga-Lorenzo A, Akbari A, et al. Examining variation in the measurement of multimorbidity in research: a systematic review of 566 studies. Lancet Public Health 2021; 6: e587–97.

Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. What is polypharmacy? A systematic review of definitions. BMC Geriatr 2017; 17: 230.

Pazan F, Wehling M. Polypharmacy in older adults: a narrative review of definitions, epidemiology and consequences. Eur Geriatr Med 2021; 12: 443–52.

Beezer J, Al Hatrushi M, Husband A, Kurdi A, Forsyth P. Polypharmacy definition and prevalence in heart failure: a systematic review. Heart Fail Rev 2022; 27: 465–92.

Kuriyama S, Hozawa A, Ohmori K, et al. Joint impact of health risks on health care charges: 7-year follow-up of National Health Insurance beneficiaries in Japan (the Ohsaki Study). Prev Med (Baltim) 2004; 39: 1194–9.

糖尿病になったらいくらかかる?. 創新社. https://dm-net.co.jp/seido/02/(accessed May 24, 2024).

発がんリスクの低減に資する効果的な禁煙推進のための環境整備と支援方策の開発ならびに普及のための制度化に関する研究 厚生労働科学研究費補助金 疾病・障害対策研究分野 第3次対がん総合戦略研究  https://mhlw-grants.niph.go.jp/project/22511(accessed May 24, 2024).

図⑦出典

高血圧治療ガイドライン 2019 日本高血圧学会高血圧治療ガイドライン作成委員会 編

日本糖尿病学会 編・著:糖尿病治療の手びき2020(改訂第58版), p25, 南江堂, 2020

糖尿病合併症について 日本糖尿病学会 https://www.jds.or.jp/modules/citizen/index.php?content_id=3(accessed May 24, 2024).

図⑧出典

Gijsen R, Hoeymans N, Schellevis FG, Ruwaard D, Satariano WA, Van Den Bos GAM. Causes and consequences of comorbidity: A review. 2001 www.rivm.nl/public.

Nunes BP, Flores TR, Mielke GI, Thumé E, Facchini LA. Multimorbidity and mortality in older adults: A systematic review and meta-analysis. Arch Gerontol Geriatr. 2016; 67: 130–8.

Kato D, Kawachi I, Saito J, Kondo N. Complex multimorbidity and mortality in Japan: a prospective propensity-matched cohort study. BMJ Open 2021; 11: e046749.

Kadam UT, Croft PR. Clinical multimorbidity and physical function in older adults: A record and health status linkage study in general practice. Fam Pract 2007; 24: 412–9.

Marengoni A, Angleman S, Melis R, et al. Aging with multimorbidity: A systematic review of the literature. Ageing Res Rev. 2011; 10: 430–9.

Ryan A, Wallace E, O’Hara P, Smith SM. Multimorbidity and functional decline in community-dwelling adults: a systematic review. Health Qual Life Outcomes 2015; 13: 168.

Fortin M, Lapointe L, Hudon C, Vanasse A, Ntetu AL, Maltais D. Multimorbidity and quality of life in primary care: a systematic review. Health Qual Life Outcomes 2004; 2: 51.

Kanesarajah J, Waller M, Whitty JA, Mishra GD. Multimorbidity and quality of life at mid-life: A systematic review of general population studies. Maturitas 2018; 109: 53–62.

Makovski TT, Schmitz S, Zeegers MP, Stranges S, van den Akker M. Multimorbidity and quality of life: Systematic literature review and meta-analysis. Ageing Res Rev. 2019; 53. DOI:10.1016/j.arr.2019.04.005.

Wolff JL, Starfield B, Anderson G. Prevalence, Expenditures, and Complications of Multiple Chronic Conditions in the Elderly. Arch Intern Med 2002; 162: 2269–76.

Lehnert T, Heider D, Leicht H, et al. Health care utilization and costs of elderly persons with multiple chronic conditions. Medical Care Research and Review 2011; 68: 387–420.

France EF, Wyke S, Gunn JM, Mair FS, McLean G, Mercer SW. Multimorbidity in primary care: a systematic review of prospective cohort studies. Br J Gen Pract 2012; 62: e297-307.

Picco L, Achilla E, Abdin E, et al. Economic burden of multimorbidity among older adults: impact on healthcare and societal costs. BMC Health Serv Res 2016; 16: 173.

Wang L, Si L, Cocker F, Palmer AJ, Sanderson K. A Systematic Review of Cost-of-Illness Studies of Multimorbidity. Appl Health Econ Health Policy 2018; 16: 15–29.

Soley-Bori M, Ashworth M, Bisquera A, et al. Impact of multimorbidity on healthcare costs and utilisation: a systematic review of the UK literature. Br J Gen Pract 2021; 71: e39–46.

Kato D, Kawachi I, Saito J, Kondo N. Complex Multimorbidity and Incidence of Long-Term Care Needs in Japan: A Prospective Cohort Study. Int J Environ Res Public Health 2021; 18. DOI:10.3390/ijerph181910523.

Gould CE, O’Hara R, Goldstein MK, Beaudreau SA. Multimorbidity is associated with anxiety in older adults in the Health and Retirement Study. Int J Geriatr Psychiatry 2016; 31: 1105–15.

Read JR, Sharpe L, Modini M, Dear BF. Multimorbidity and depression: A systematic review and meta-analysis. J Affect Disord 2017; 221: 36–46.

Frazier SC. Health outcomes and polypharmacy in elderly individuals: an integrated literature review. J Gerontol Nurs 2005; 31: 4–11.

Jyrkkä J, Enlund H, Korhonen MJ, Sulkava R, Hartikainen S. Polypharmacy Status as an Indicator of Mortality in an Elderly Population. Drug and aging 2009; 26: 1039–48.

Gómez C, Vega-Quiroga S, Bermejo-Pareja F, Medrano MJ, Louis ED, Benito-León J. Polypharmacy in the Elderly: A Marker of Increased Risk of Mortality in a Population-Based Prospective Study (NEDICES). Gerontology 2015; 61: 301–9.

Chang TI, Park H, Kim DW, et al. Polypharmacy, hospitalization, and mortality risk: a nationwide cohort study. Sci Rep 2020; 10: 18964.

Davies LE, Spiers G, Kingston A, Todd A, Adamson J, Hanratty B. Adverse Outcomes of Polypharmacy in Older People: Systematic Review of Reviews. J Am Med Dir Assoc 2020; 21: 181–7.

Abe N, Kakamu T, Kumagai T, et al. Polypharmacy at admission prolongs length of hospitalization in gastrointestinal surgery patients. Geriatr Gerontol Int 2020; 20: 1085–90.

Gnjidic D, Hilmer SN, Blyth FM, et al. High-risk prescribing and incidence of frailty among older community-dwelling men. Clin Pharmacol Ther 2012; 91: 521–8.

Gnjidic D, Le Couteur DG, Abernethy DR, Hilmer SN. Drug burden index and beers criteria: impact on functional outcomes in older people living in self-care retirement villages. J Clin Pharmacol 2012; 52: 258–65.

Nguyen JK, Fouts MM, Kotabe SE, Lo E. Polypharmacy as a risk factor for adverse drug reactions in geriatric nursing home residents. Am J Geriatr Pharmacother 2006; 4: 36–41.

Jano E, Aparasu RR. Healthcare outcomes associated with Beers’ criteria: A systematic review. Annals of Pharmacotherapy 2007; 41: 438–48.

Qato DM, Alexander GC, Conti RM, Johnson M, Schumm P, Lindau ST. Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA 2008; 300: 2867–78.

Ahmed B, Nanji K, Mujeeb R, Patel MJ. Effects of polypharmacy on adverse drug reactions among geriatric outpatients at a tertiary care hospital in Karachi: a prospective cohort study. PLoS One 2014; 9: e112133.

Akazawa M, Imai H, Igarashi A, Tsutani K. Potentially inappropriate medication use in elderly Japanese patients. Am J Geriatr Pharmacother 2010; 8: 146–60.

第3章 病気のリスクを減らす10の習慣

普段の行動の見直しが、病気のリスクを引き下げる

図⑨出典

Kadomatsu Y, Tsukamoto M, Sasakabe T, et al. A risk score predicting new incidence of hypertension in Japan. J Hum Hypertens 2019; 33: 748–55.

Nanri A, Nakagawa T, Kuwahara K, et al. Correction: Development of Risk Score for Predicting 3-Year Incidence of Type 2 Diabetes: Japan Epidemiology Collaboration on Occupational Health Study. PLoS One 2018; 13: e0199075.

Nanri A, Nakagawa T, Kuwahara K, et al. Development of Risk Score for Predicting 3-Year Incidence of Type 2 Diabetes: Japan Epidemiology Collaboration on Occupational Health Study. PLoS One 2015; 10: e0142779.

Honda T, Chen S, Hata J, et al. Development and Validation of a Risk Prediction Model for Atherosclerotic Cardiovascular Disease in Japanese Adults: The Hisayama Study. J Atheroscler Thromb 2022; 29: 345–61.

Sasazuki S, Inoue M, Iwasaki M, et al. Combined impact of five lifestyle factors and subsequent risk of cancer: The Japan Public Health Center Study. Prev Med (Baltim) 2012; 54: 112–6.

Honda T, Ohara T, Yoshida D, et al. Development of a dementia prediction model for primary care: The Hisayama Study. Alzheimers Dement (Amst) 2021; 13: e12221.

習慣① 喫煙ーたばこの煙・蒸気と距離をとる

2022(令和4)年 国民生活基礎調査の概況. 厚生労働省. https://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa22/index.html(accessed May 24, 2024).

Hong SW, Teesdale-Spittle P, Page R, Ellenbroek B, Truman P. Biologically Active Compounds Present in Tobacco Smoke: Potential Interactions Between Smoking and Mental Health. Front Neurosci 2022; 16: 885489.

Brown BG, Borschke AJ, Doolittle DJ. An analysis of the role of tobacco-specific nitrosamines in the carcinogenicity of tobacco smoke. Nonlinearity Biol Toxicol Med 2003; 1: 179–98.

Bellamri M, Walmsley SJ, Brown C, et al. DNA Damage and Oxidative Stress of Tobacco Smoke Condensate in Human Bladder Epithelial Cells. Chem Res Toxicol 2022; 35: 1863–80.

Hoffmann D, Hoffmann I, El-Bayoumy K. The less harmful cigarette: a controversial issue. a tribute to Ernst L. Wynder. Chem Res Toxicol 2001; 14: 767–90.

Münzel T, Hahad O, Kuntic M, Keaney JF, Deanfield JE, Daiber A. Effects of tobacco cigarettes, e-cigarettes, and waterpipe smoking on endothelial function and clinical outcomes. Eur Heart J 2020; 41: 4057–70.

禁煙宣言 特定非営利活動法人 日本歯周病学会 https://www.perio.jp/publication/upload_file/Pamphlet_Declara.pdf(accessed May 24, 2024).

Chakravarthy U, Wong TY, Fletcher A, et al. Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis. BMC Ophthalmol 2010; 10: 31.

Cong R, Zhou B, Sun Q, Gu H, Tang N, Wang B. Smoking and the risk of age-related macular degeneration: a meta-analysis. Ann Epidemiol 2008; 18: 647–56.

Beltrán-Zambrano E, García-Lozada D, Ibáñez-Pinilla E. Risk of cataract in smokers: A meta-analysis of observational studies. Arch Soc Esp Oftalmol 2019; 94: 60–74.

Nita M, Grzybowski A. Smoking and Eye Pathologies. A Systemic Review. Part I. Anterior Eye Segment Pathologies. Curr Pharm Des 2017; 23: 629–38.

Ye J, He J, Wang C, et al. Smoking and risk of age-related cataract: a meta-analysis. Invest Ophthalmol Vis Sci 2012; 53: 3885–95.

Wakai K, Inoue M, Mizoue T, et al. Tobacco smoking and lung cancer risk: an evaluation based on a systematic review of epidemiological evidence among the Japanese population. Jpn J Clin Oncol 2006; 36: 309–24.

Hori M, Tanaka H, Wakai K, Sasazuki S, Katanoda K. Secondhand smoke exposure and risk of lung cancer in Japan: a systematic review and meta-analysis of epidemiologic studies. Jpn J Clin Oncol 2016; 46: 942–51.

Kim Y, Lee K. Quantification of Outdoor Tobacco Smoke Exposure at Outdoor Smoking Facilities. Nicotine Tob Res 2021; 23: 1507–11.

Hwang J, Lee K. Determination of outdoor tobacco smoke exposure by distance from a smoking source. Nicotine Tob Res 2014; 16: 478–84.

Sureda X, Fernández E, López MJ, Nebot M. Secondhand tobacco smoke exposure in open and semi-open settings: a systematic review. Environ Health Perspect 2013; 121: 766–73.

Matt GE, Quintana PJE, Zakarian JM, et al. When smokers quit: exposure to nicotine and carcinogens persists from thirdhand smoke pollution. Tob Control 2016; 26: 548–56.

Hang B, Mao J-H, Snijders AM. Genetic Susceptibility to Thirdhand-Smoke-Induced Lung Cancer Development. Nicotine Tob Res 2019; 21: 1294–6.

Kuo H-W, Rees VW. Third-hand smoke (THS): What is it and what should we do about it? J Formos Med Assoc 2019; 118: 1478–9.

Ferrante G, Simoni M, Cibella F, et al. Third-hand smoke exposure and health hazards in children. Monaldi Arch Chest Dis 2013; 79: 38–43.

Northrup TF, Stotts AL, Suchting R, et al. Thirdhand Smoke Contamination and Infant Nicotine Exposure in a Neonatal Intensive Care Unit: An Observational Study. Nicotine Tob Res 2021; 23: 373–82.

Bahl V, Shim HJ, Jacob P, Dias K, Schick SF, Talbot P. Thirdhand smoke: Chemical dynamics, cytotoxicity, and genotoxicity in outdoor and indoor environments. Toxicol In Vitro 2016; 32: 220–31.

Hang B, Sarker AH, Havel C, et al. Thirdhand smoke causes DNA damage in human cells. Mutagenesis 2013; 28: 381–91.

He L, Zhou Y-X, Zhang Y, et al. Thirdhand cigarette smoke leads to age-dependent and persistent alterations in the cecal microbiome of mice. Microbiologyopen 2021; 10: e1198.

Hang B, Wang Y, Huang Y, et al. Short-term early exposure to thirdhand cigarette smoke increases lung cancer incidence in mice. Clin Sci (Lond) 2018; 132: 475–88.

Wu J-X, Lau ATY, Xu Y-M. Indoor Secondary Pollutants Cannot Be Ignored: Third-Hand Smoke. Toxics 2022; 10. DOI:10.3390/toxics10070363.

Acuff L, Fristoe K, Hamblen J, Smith M, Chen J. Third-Hand Smoke: Old Smoke, New Concerns. J Community Health 2016; 41: 680–7.

Matt GE, Quintana PJE, Destaillats H, et al. Thirdhand tobacco smoke: emerging evidence and arguments for a multidisciplinary research agenda. Environ Health Perspect 2011; 119: 1218–26.

Grillo R, Khemiss M, da Silva YS. Cytotoxic and Genotoxic Effects of Waterpipe on Oral Health Status: Systematic review and meta-analysis. Sultan Qaboos Univ Med J 2023; 23: 5–12.

Armendáriz-Castillo I, Guerrero S, Vera-Guapi A, et al. Genotoxic and Carcinogenic Potential of Compounds Associated with Electronic Cigarettes: A Systematic Review. Biomed Res Int 2019; 2019: 1386710.

Awan KH, Siddiqi K, Patil S, Hussain QA. Assessing the Effect of Waterpipe Smoking on Cancer Outcome – a Systematic Review of Current Evidence. Asian Pac J Cancer Prev 2017; 18: 495–502.

Montazeri Z, Nyiraneza C, El-Katerji H, Little J. Waterpipe smoking and cancer: systematic review and meta-analysis. Tob Control 2017; 26: 92–7.

Waziry R, Jawad M, Ballout RA, Al Akel M, Akl EA. The effects of waterpipe tobacco smoking on health outcomes: an updated systematic review and meta-analysis. Int J Epidemiol 2017; 46: 32–43.

Rogers I, Memon A, Paudyal P. Association between Smokeless Tobacco Use and Waterpipe Smoking and the Risk of Lung Cancer: A Systematic Review and Meta-Analysis of Current Epidemiological Evidence. Asian Pac J Cancer Prev 2022; 23: 1451–63.

MacDonald A, Middlekauff HR. Electronic cigarettes and cardiovascular health: what do we know so far? Vasc Health Risk Manag 2019; 15: 159–74.

Navas-Acien A, Martinez-Morata I, Hilpert M, Rule A, Shimbo D, LoIacono NJ. Early Cardiovascular Risk in E-cigarette Users: the Potential Role of Metals. Curr Environ Health Rep 2020; 7: 353–61.

Thirión-Romero I, Pérez-Padilla R, Zabert G, Barrientos-Gutiérrez I. RESPIRATORY IMPACT OF ELECTRONIC CIGARETTES AND ‘LOW-RISK’ TOBACCO. Rev Invest Clin 2019; 71: 17–27.

Bravo-Gutiérrez OA, Falfán-Valencia R, Ramírez-Venegas A, Sansores RH, Ponciano-Rodríguez G, Pérez-Rubio G. Lung Damage Caused by Heated Tobacco Products and Electronic Nicotine Delivery Systems: A Systematic Review. Int J Environ Res Public Health 2021; 18. DOI:10.3390/ijerph18084079.

Ramôa CP, Eissenberg T, Sahingur SE. Increasing popularity of waterpipe tobacco smoking and electronic cigarette use: Implications for oral healthcare. J Periodontal Res 2017; 52: 813–23.

Tomar SL, Hecht SS, Jaspers I, Gregory RL, Stepanov I. Oral Health Effects of Combusted and Smokeless Tobacco Products. Adv Dent Res 2019; 30: 4–10.

Yang I, Sandeep S, Rodriguez J. The oral health impact of electronic cigarette use: a systematic review. DOI:10.1080/10408444.

Almeida-da-Silva CLC, Matshik Dakafay H, O’Brien K, Montierth D, Xiao N, Ojcius DM. Effects of electronic cigarette aerosol exposure on oral and systemic health. Biomed J 2021; 44: 252–9.

Eltorai AE, Choi AR, Eltorai AS. Impact of Electronic Cigarettes on Various Organ Systems. Respir Care 2019; 64: 328–36.

Cherian S V., Kumar A, Estrada-Y-Martin RM. E-Cigarette or Vaping Product-Associated Lung Injury: A Review. American Journal of Medicine. 2020; 133: 657–63.

Tzortzi A, Kapetanstrataki M, Evangelopoulou V, Beghrakis P. A Systematic Literature Review of E-Cigarette-Related Illness and Injury: Not Just for the Respirologist. Int J Environ Res Public Health 2020; 17. DOI:10.3390/ijerph17072248.

Marques P, Piqueras L, Sanz M-J. An updated overview of e-cigarette impact on human health. Respir Res 2021; 22: 151.

あなたのため、そばにいる人のため 禁煙は愛. 日本医師会. https://www.med.or.jp/forest/kinen/ (accessed May 25, 2024).

図⑩・⑪出典

厚生労働省 「喫煙と健康 喫煙の健康影響に関する検討会報告書」 https://www.mhlw.go.jp/stf/shingi2/0000135586.html(accessed May 24, 2024).

習慣② 体重管理ー「適正な体重&お腹周り」をキープする

Zhang X, Ha S, Lau HC-H, Yu J. Excess body weight: Novel insights into its roles in obesity comorbidities. Semin Cancer Biol 2023; 92: 16–27.

Golubnitschaja O, Liskova A, Koklesova L, et al. Caution, ‘normal’ BMI: health risks associated with potentially masked individual underweight-EPMA Position Paper 2021. EPMA J 2021; 12: 243–64.

宮崎 滋. 診療ガイドラインat a glance 肥満症ガイドライン2016. 日本内科学会雑誌 2018; 107: 262–8.

高齢者肥満症診療ガイドライン2018. 日本老年医学会雑誌 2018; 55: 464–538.

Segula D. Complications of obesity in adults: a short review of the literature. Malawi Med J 2014; 26: 20–4.

Kalish VB. Obesity in Older Adults. Primary Care – Clinics in Office Practice. 2016; 43: 137–44.

Lammert F, Gurusamy K, Ko CW, et al. Gallstones. Nat Rev Dis Primers 2016; 2. DOI:10.1038/nrdp.2016.24.

Pak M, Lindseth G. Risk Factors for Cholelithiasis. Gastroenterol Nurs 2016; 39: 297–309.

Littlefield A, Lenahan C. Cholelithiasis: Presentation and Management. J Midwifery Womens Health 2019; 64: 289–97.

Di Ciaula A, Portincasa P. Recent advances in understanding and managing cholesterol gallstones. F1000Res 2018; 7. DOI:10.12688/f1000research.15505.1.

Di Ciaula A, Wang DQH, Portincasa P. Cholesterol cholelithiasis: part of a systemic metabolic disease, prone to primary prevention. Expert Rev Gastroenterol Hepatol 2019; 13: 157–71.

宮澤 克人, 鈴木 孝治. 診療ガイドライン at a glance 尿路結石症診療ガイドライン2013年版. 日本内科学会雑誌 2017; 106: 994–9.

Khan SR, Pearle MS, Robertson WG, et al. Kidney stones. Nat Rev Dis Primers 2016; 2: 16008.

Carbone A, Al Salhi Y, Tasca A, et al. Obesity and kidney stone disease: a systematic review. Minerva Urol Nefrol 2018; 70: 393–400.

Rajan TM, Menon V. Psychiatric disorders and obesity: A review of association studies. J Postgrad Med 2017; 63: 182–90.

Mannan M, Mamun A, Doi S, Clavarino A. Prospective Associations between Depression and Obesity for Adolescent Males and Females- A Systematic Review and Meta-Analysis of Longitudinal Studies. PLoS One 2016; 11: e0157240.

Jantaratnotai N, Mosikanon K, Lee Y, McIntyre RS. The interface of depression and obesity. Obes Res Clin Pract. 2017; 11: 1–10.

Milaneschi Y, Simmons WK, van Rossum EFC, Penninx BW. Depression and obesity: evidence of shared biological mechanisms. Mol Psychiatry. 2019; 24: 18–33.

Zhang X, Chen H, Gu K, Chen J, Jiang X. Association of Body Mass Index with Risk of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. COPD 2021; 18: 101–13.

Chen H, Liu X, Gao X, et al. Epidemiological evidence relating risk factors to chronic obstructive pulmonary disease in China: A systematic review and meta-analysis. PLoS One 2021; 16: e0261692.

Yang Y, Mao J, Ye Z, Li J, Zhao H, Liu Y. Risk factors of chronic obstructive pulmonary disease among adults in Chinese mainland: A systematic review and meta-analysis. Respir Med 2017; 131: 158–65.

Johansson H, Kanis JA, Odén A, et al. A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 2014; 29: 223–33.

Xiang B-Y, Huang W, Zhou G-Q, Hu N, Chen H, Chen C. Body mass index and the risk of low bone mass-related fractures in women compared with men: A PRISMA-compliant meta-analysis of prospective cohort studies. Medicine 2017; 96: e5290.

健康日本21(第三次) 厚生労働省 https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/kenkounippon21_00006.html(accessed May 25, 2024).

日本肥満学会.肥満症診療ガイドライン2016.ライフサイエンス出版

新しい肥満の判定と肥満症の診断基準. 日本肥満学会誌 2000; 6: 18.88 

日本人の食事摂取基準(2020年版). 厚生労働省. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/syokuji_kijyun.html(accessed May 28, 2024).

Nakagami T, Qiao Q, Carstensen B, et al. Age, body mass index and Type 2 diabetes-associations modified by ethnicity. Diabetologia 2003; 46: 1063–70.

Kawada T, Otsuka T, Inagaki H, et al. Optimal cut-off levels of body mass index and waist circumference in relation to each component of metabolic syndrome (MetS) and the number of MetS component. Diabetes Metab Syndr 2011; 5: 25–8.

Kuwabara M, Kuwabara R, Niwa K, et al. Different Risk for Hypertension, Diabetes, Dyslipidemia, and Hyperuricemia According to Level of Body Mass Index in Japanese and American Subjects. Nutrients 2018; 10. DOI:10.3390/nu10081011.

Miyake T, Kumagi T, Hirooka M, et al. Body mass index is the most useful predictive factor for the onset of nonalcoholic fatty liver disease: a community-based retrospective longitudinal cohort study. J Gastroenterol 2013; 48: 413–22.

Kam LY, Huang DQ, Teng MLP, et al. Clinical Profiles of Asians with NAFLD: A Systematic Review and Meta-Analysis. Dig Dis 2022; 40: 734–44.

Eguchi Y, Wong G, Lee EI-H, Akhtar O, Lopes R, Sumida Y. Epidemiology of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in Japan: A focused literature review. JGH Open 2020; 4: 808–17.

Otsuka T, Kachi Y, Takada H, et al. Development of a risk prediction model for incident hypertension in a working-age Japanese male population. Hypertension Research 2015; 38: 419–25.

Someya Y, Tamura Y, Kohmura Y, Aoki K, Kawai S, Daida H. Slightly increased BMI at young age is a risk factor for future hypertension in Japanese men. PLoS One 2018; 13: e0191170.

糖尿病診療ガイドライン2024 日本糖尿病学会 https://www.jds.or.jp/modules/publication/index.php?content_id=40(accessed May 28, 2024).

糖尿病治療ガイド2022-2023 日本糖尿病学会 編・著 文光堂

Hall KD, Heymsfield SB, Kemnitz JW, Klein S, Schoeller DA, Speakman JR. Energy balance and its components: Implications for body weight regulation. American Journal of Clinical Nutrition. 2012; 95: 989–94.

Ross R, Neeland IJ, Yamashita S, et al. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol 2020; 16: 177–89.

Yoshida D, Toyomura K, Fukumoto J, et al. Waist circumference and cardiovascular risk factors in Japanese men and women. J Atheroscler Thromb 2009; 16: 431–41.

Chen Q, Li L, Yi J, et al. Waist circumference increases risk of coronary heart disease: Evidence from a Mendelian randomization study. Mol Genet Genomic Med 2020; 8: e1186.

Wang L, Lee Y, Wu Y, et al. A prospective study of waist circumference trajectories and incident cardiovascular disease in China: the Kailuan Cohort Study. Am J Clin Nutr 2021; 113: 338–47.

Seo DC, Choe S, Torabi MR. Is waist circumference ≥ 102/88 cm better than body mass index ≥ 30 to predict hypertension and diabetes development regardless of gender, age group, and race/ethnicity? Meta-analysis. Prev Med (Baltim). 2017; 97: 100–8.

Wei J, Liu X, Xue H, Wang Y, Shi Z. Comparisons of Visceral Adiposity Index, Body Shape Index, Body Mass Index and Waist Circumference and Their Associations with Diabetes Mellitus in Adults. Nutrients 2019; 11. DOI:10.3390/nu11071580.

Lee J, Cho YK, Kang YM, et al. The Impact of NAFLD and Waist Circumference Changes on Diabetes Development in Prediabetes Subjects. Sci Rep 2019; 9: 17258.

Hu H, Kawasaki Y, Kuwahara K, et al. Trajectories of body mass index and waist circumference before the onset of diabetes among people with prediabetes. Clin Nutr 2020; 39: 2881–8.

Li K, Feng T, Wang L, et al. Causal associations of waist circumference and waist-to-hip ratio with type II diabetes mellitus: new evidence from Mendelian randomization. Molecular Genetics and Genomics 2021; 296: 605–13.

Müller MJ. From BMI to functional body composition. Eur J Clin Nutr. 2013; 67: 1119–21.

Examination Committee of Criteria for ‘Obesity Disease’ in Japan, Japan Society for the Study of Obesity. New criteria for ‘obesity disease’ in Japan. Circ J 2002; 66: 987–92.

Hiuge-Shimizu A, Kishida K, Funahashi T, et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACATION-J study). Ann Med 2012; 44: 82–92.

メタボリックシンドローム診断基準検討委員会. メタボリックシンドロームの定義と診断基準. 日本内科学会雑誌 2005; 94. https://www.jstage.jst.go.jp/article/naika1913/94/4/94_4_794/_pdf/-char/ja (accessed May 28, 2024).

門脇 孝. 腹囲(ウエスト周囲長)に関するエビデンス. 第5回特定健康診査・特定保健指導の在り方に関する検討会 厚生労働省. 2016; published online April 5. https://www.mhlw.go.jp/file/05-Shingikai-10901000-Kenkoukyoku-Soumuka/0000111251_4.pdf(accessed May 28, 2024).

Yamazaki Y, Fujihara K, Sato T, et al. Usefulness of New Criteria for Metabolic Syndrome Optimized for Prediction of Cardiovascular Diseases in Japanese. J Atheroscler Thromb 2024; 31: 382–95.

Hori A, Nanri A, Sakamoto N, et al. Comparison of body mass index, waist circumference, and waist-to-height ratio for predicting the clustering of cardiometabolic risk factors by age in Japanese workers–Japan Epidemiology Collaboration on Occupational Health study. Circ J 2014; 78: 1160–8.

Kato M, Takahashi Y, Inoue M, et al. Comparisons between anthropometric indices for predicting the metabolic syndrome in Japanese. Asia Pac J Clin Nutr 2008; 17: 223–8.

図⑬出典

メタボリックシンドローム診断基準検討委員会. メタボリックシンドロームの定義と診断基準. 日本内科学会雑誌 2005; 94. https://www.jstage.jst.go.jp/article/naika1913/94/4/94_4_794/_pdf/-char/ja (accessed May 28, 2024).

肥満症診療ガイドライン2022 日本肥満学会 http://www.jasso.or.jp/contents/magazine/journal.html (accessed May 28, 2024)    

習慣③ 食事ー「食塩を控えた健康的な食」を心がける

GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1223–49.

He FJ, Tan M, Ma Y, MacGregor GA. Salt Reduction to Prevent Hypertension and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75: 632–47.

Hunter RW, Dhaun N, Bailey MA. The impact of excessive salt intake on human health. Nat Rev Nephrol. 2022; 18: 321–35.

Patel Y, Joseph J. Sodium Intake and Heart Failure. Int J Mol Sci 2020; 21. DOI:10.3390/ijms21249474.

Kotchen TA, Cowley AW, Frohlich ED. Salt in Health and Disease — A Delicate Balance. New England Journal of Medicine 2013; 368: 1229–37.

Jaques DA, Wuerzner G, Ponte B. Sodium Intake as a Cardiovascular Risk Factor: A Narrative Review. Nutrients 2021; 13. DOI:10.3390/nu13093177.

Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary sodium and health: more than just blood pressure. J Am Coll Cardiol 2015; 65: 1042–50.

Kotchen TA, Cowley AW, Frohlich ED. Salt in Health and Disease — A Delicate Balance. New England Journal of Medicine 2013; 368: 1229–37.

Banda KJ, Chiu HY, Hu SH, Yeh HC, Lin KC, Huang HC. Associations of dietary carbohydrate and salt consumption with esophageal cancer risk: A systematic review and meta-analysis of observational studies. Nutr Rev 2020; 78: 688–98.

Wu B, Yang D, Yang S, Zhang G. Dietary Salt Intake and Gastric Cancer Risk: A Systematic Review and Meta-Analysis. Front Nutr 2021; 8: 801228.

Shikata K, Kiyohara Y, Kubo M, et al. A prospective study of dietary salt intake and gastric cancer incidence in a defined Japanese population: the Hisayama study. Int J Cancer 2006; 119: 196–201.

Tsugane S, Sasazuki S, Kobayashi M, Sasaki S. Salt and salted food intake and subsequent risk of gastric cancer among middle-aged Japanese men and women. Br J Cancer 2004; 90: 128–34.

Robinson AT, Edwards DG, Farquhar WB. The Influence of Dietary Salt Beyond Blood Pressure. Curr Hypertens Rep 2019; 21: 42.

日本人の食事摂取基準 厚生労働省. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/syokuji_kijyun.html(accessed May 28, 2024).

健康日本21(第三次) 厚生労働省 https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/kenkounippon21_00006.html(accessed May 25, 2024).

Guideline: Sodium Intake for Adults and Children. World Health Organization, 2012.

Salt reduction. World Health Organization. 2020; published online April 29. https://www.who.int/news-room/fact-sheets/detail/salt-reduction#:~:text=For%20adults%3A%20WHO%20recommends%20that,relative%20to%20those%20of%20adults. (accessed May 28, 2024).

Dietary Guidelines for Americans, 2020-2025 and Online Materials https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials(accessed May 15, 2023).

Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021–104.

令和元年 国民健康・栄養調査報告 厚生労働省https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html(accessed May 28, 2024).

Ma Z, Hummel SL, Sun N, Chen Y. From salt to hypertension, what is missed? J Clin Hypertens (Greenwich) 2021; 23: 2033–41.

日本高血圧学会高血圧治療ガイドライン作成委員会, editor. 高血圧治療ガイドライン2019. 日本高血圧学会, 2019 https://www.jpnsh.jp/data/jsh2019/JSH2019_noprint.pdf (accessed May 28, 2024).

日本農林規格 風味調味料. 2019 https://www.maff.go.jp/j/jas/jas_standard/attach/pdf/index-36.pdf (accessed May 28, 2024).

栄養成分表示について. 消費者庁. https://www.caa.go.jp/policies/policy/food_labeling/nutrient_declearation/(accessed May 28, 2024).

Healthy diet. World Health Organization. 2020; published online April. https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed May 2, 2023).

Dietary Guidelines for Americans 2020-2025, Ninth Edition. USDA, 2020 https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf (accessed May 2, 2023).

Herforth A, Arimond M, Álvarez-Sánchez C, Coates J, Christianson K, Muehlhoff E. A Global Review of Food-Based Dietary Guidelines. Adv Nutr 2019; 10: 590–605.

Cena H, Calder PC. Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020; 12. DOI:10.3390/nu12020334.

Harrison S, Couture P, Lamarche B. Diet Quality, Saturated Fat and Metabolic Syndrome. Nutrients 2020; 12. DOI:10.3390/nu12113232.

Cámara M, Giner RM, González-Fandos E, et al. Food-Based Dietary Guidelines around the World: A Comparative Analysis to Update AESAN Scientific Committee Dietary Recommendations. Nutrients 2021; 13. DOI:10.3390/nu13093131.

Lichtenstein AH, Appel LJ, Vadiveloo M, et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation 2021; 144: e472–87.

「食事バランスガイド」について. 農林水産省. https://www.maff.go.jp/j/balance_guide/ (accessed May 28, 2024).

Wang X, Ouyang Y, Liu J, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014; 349: g4490.

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 2017; 46: 1029–56.

Wu L, Sun D, He Y. Fruit and vegetables consumption and incident hypertension: Dose-response meta-analysis of prospective cohort studies. J Hum Hypertens. 2016; 30: 573–80.

Wu Y, Zhang D, Jiang X, Jiang W. Fruit and vegetable consumption and risk of type 2 diabetes mellitus: A dose-response meta-analysis of prospective cohort studies. Nutrition, Metabolism and Cardiovascular Diseases 2015; 25: 140–7.

Halvorsen RE, Elvestad M, Molin M, Aune D. Fruit and vegetable consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective studies. BMJ Nutr Prev Health 2021; 4: 519–31.

Wang X, Ouyang Y, Liu J, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2014; 349: g4490.

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol 2017; 46: 1029–56.

Wu L, Sun D, He Y. Fruit and vegetables consumption and incident hypertension: Dose-response meta-analysis of prospective cohort studies. J Hum Hypertens. 2016; 30: 573–80.

Wu Y, Zhang D, Jiang X, Jiang W. Fruit and vegetable consumption and risk of type 2 diabetes mellitus: A dose-response meta-analysis of prospective cohort studies. Nutrition, Metabolism and Cardiovascular Diseases 2015; 25: 140–7.

Halvorsen RE, Elvestad M, Molin M, Aune D. Fruit and vegetable consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective studies. BMJ Nutr Prev Health 2021; 4: 519–31.

Ghoreishy SM, Asoudeh F, Jayedi A, Mohammadi H. Fruit and vegetable intake and risk of frailty: A systematic review and dose response meta-analysis. Ageing Res Rev. 2021; 71. DOI:10.1016/j.arr.2021.101460.

Zong G, Gao A, Hu FB, Sun Q. Whole Grain Intake and Mortality From All Causes, Cardiovascular Disease, and Cancer: A Meta-Analysis of Prospective Cohort Studies. Circulation 2016; 133: 2370–80.

Wei H, Gao Z, Liang R, Li Z, Hao H, Liu X. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality: A meta-analysis of prospective cohort studies. British Journal of Nutrition 2016; 116: 514–25.

Chen GC, Tong X, Xu JY, et al. Whole-grain intake and total, cardiovascular, and cancer mortality: A systematic review and meta-analysis of prospective studies. American Journal of Clinical Nutrition. 2016; 104: 164–72.

Benisi-Kohansal S, Saneei P, Salehi-Marzijarani M, Larijani B, Esmaillzadeh A. Whole-Grain Intake and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv Nutr 2016; 7: 1052–65.

Zhang B, Zhao Q, Guo W, Bao W, Wang X. Association of whole grain intake with all-cause, cardiovascular, and cancer mortality: A systematic review and dose-response meta-analysis from prospective cohort studies. Eur J Clin Nutr. 2018; 72: 57–65.

Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ 2016; 353: i2716.

Aune D, Norat T, Romundstad P, Vatten LJ. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol. 2013; 28: 845–58.

Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med 2020; 17: e1003053.

Chen J, Huang Q, Shi W, Yang L, Chen J, Lan Q. Meta-Analysis of the Association between Whole and Refined Grain Consumption and Stroke Risk Based on Prospective Cohort Studies. Asia Pac J Public Health. 2016; 28: 563–75.

Marshall S, Petocz P, Duve E, et al. The Effect of Replacing Refined Grains with Whole Grains on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials with GRADE Clinical Recommendation. J Acad Nutr Diet. 2020; 120: 1859-1883.e31.

Guo H, Ding J, Liang J, Zhang Y. Associations of Whole Grain and Refined Grain Consumption With Metabolic Syndrome. A Meta-Analysis of Observational Studies. Front Nutr 2021; 8: 695620.

Sawicki CM, Jacques PF, Lichtenstein AH, et al. Whole- and Refined-Grain Consumption and Longitudinal Changes in Cardiometabolic Risk Factors in the Framingham Offspring Cohort. J Nutr 2021; 151: 2790–9.

Kirwan JP, Malin SK, Scelsi AR, et al. A Whole-Grain Diet Reduces Cardiovascular Risk Factors in Overweight and Obese Adults: A Randomized Controlled Trial. J Nutr 2016; 146: 2244–51.

Musa-Veloso K, Poon T, Harkness LS, O’Shea M, Chu Y. The effects of whole-grain compared with refined wheat, rice, and rye on the postprandial blood glucose response: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2018; 108: 759–74.

Malin SK, Kullman EL, Scelsi AR, et al. A whole-grain diet reduces peripheral insulin resistance and improves glucose kinetics in obese adults: A randomized-controlled trial. Metabolism 2018; 82: 111–7.

Marventano S, Vetrani C, Vitale M, Godos J, Riccardi G, Grosso G. Whole Grain Intake and Glycaemic Control in Healthy Subjects: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2017; 9. DOI:10.3390/nu9070769.

Naghshi S, Sadeghi O, Willett WC, Esmaillzadeh A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020; 370: m2412.

Budhathoki S, Sawada N, Iwasaki M, et al. Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality in a Japanese Cohort. JAMA Intern Med 2019; 179: 1509–18.

Fan M, Li Y, Wang C, et al. Dietary Protein Consumption and the Risk of Type 2 Diabetes: ADose-Response Meta-Analysis of Prospective Studies. Nutrients 2019; 11. DOI:10.3390/nu11112783.

Rizzo G, Baroni L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018; 10. DOI:10.3390/nu10010043.

Polak R, Phillips EM, Campbell A. Legumes: Health Benefits and Culinary Approaches to Increase Intake. Clin Diabetes 2015; 33: 198–205.

Bouchenak M, Lamri-Senhadji M. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. J Med Food. 2013; 16: 185–98.

Tvrzicka E, Kremmyda L-S, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease–a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155: 117–30.

Maulu S, Nawanzi K, Abdel-Tawwab M, Khalil HS. Fish Nutritional Value as an Approach to Children’s Nutrition. Front Nutr 2021; 8: 780844.

Rimm EB, Appel LJ, Chiuve SE, et al. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2018; 138: e35–47.

Rocha DM, Caldas AP, Oliveira LL, Bressan J, Hermsdorff HH. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis. 2016; 244: 211–5.

Piccinin E, Cariello M, De Santis S, et al. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients 2019; 11. DOI:10.3390/nu11102283.

Fritsche KL. The science of fatty acids and inflammation. Adv Nutr 2015; 6: 293S-301S.

Christ A, Lauterbach M, Latz E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019; 51: 794–811

Raatz SK, Conrad Z, Johnson LK, Picklo MJ, Jahns L. Relationship of the Reported Intakes of Fat and Fatty Acids to Body Weight in US Adults. Nutrients 2017; 9. DOI:10.3390/nu9050438.

Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 8: CD011737.

Li H, Li J, Shen Y, Wang J, Zhou D. Legume Consumption and All-Cause and Cardiovascular Disease Mortality. Biomed Res Int 2017; 2017: 8450618.

Nagata C, Wada K, Tamura T, et al. Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: The Takayama study. American Journal of Clinical Nutrition 2017; 105: 426–31.

Namazi N, Saneei P, Larijani B, Esmaillzadeh A. Soy product consumption and the risk of all-cause, cardiovascular and cancer mortality: a systematic review and meta-analysis of cohort studies. Food Funct 2018; 9: 2576–88.

Nachvak SM, Moradi S, Anjom-shoae J, et al. Soy, Soy Isoflavones, and Protein Intake in Relation to Mortality from All Causes, Cancers, and Cardiovascular Diseases: A Systematic Review and Dose–Response Meta-Analysis of Prospective Cohort Studies. J Acad Nutr Diet 2019; 119: 1483-1500.e17.

Lou D, Li Y, Yan G, Bu J, Wang H. Soy Consumption with Risk of Coronary Heart Disease and Stroke: A Meta-Analysis of Observational Studies. Neuroepidemiology 2016; 46: 242–52.

Marventano S, Izquierdo Pulido M, Sánchez-González C, et al. Legume consumption and CVD risk: a systematic review and meta-analysis. Public Health Nutr 2017; 20: 245–54.

Yan Z, Zhang X, Li C, Jiao S, Dong W. Association between consumption of soy and risk of cardiovascular disease: A meta-analysis of observational studies. Eur J Prev Cardiol 2017; 24: 735–47.

Wada K, Tsuji M, Tamura T, et al. Soy isoflavone intake and stomach cancer risk in Japan: From the Takayama study. Int J Cancer 2015; 137: 885–92.

Tse G, Eslick GD. Soy and isoflavone consumption and risk of gastrointestinal cancer: a systematic review and meta-analysis. Eur J Nutr 2016; 55: 63–73.

Lu D, Pan C, Ye C, et al. Meta-analysis of Soy Consumption and Gastrointestinal Cancer Risk. Sci Rep 2017; 7: 4048.

Fan Y, Wang M, Li Z, et al. Intake of Soy, Soy Isoflavones and Soy Protein and Risk of Cancer Incidence and Mortality. Front Nutr 2022; 9: 847421.

Li W, Ruan W, Peng Y, Wang D. Soy and the risk of type 2 diabetes mellitus: A systematic review and meta-analysis of observational studies. Diabetes Res Clin Pract. 2018; 137: 190–9.

Tang J, Wan Y, Zhao M, Zhong H, Zheng JS, Feng F. Legume and soy intake and risk of type 2 diabetes: A systematic review and meta-analysis of prospective cohort studies. American Journal of Clinical Nutrition 2020; 111: 677–88.

Pearce M, Fanidi A, Bishop TRP, et al. Associations of Total Legume, Pulse, and Soy Consumption with Incident Type 2 Diabetes: Federated Meta-Analysis of 27 Studies from Diverse World Regions. J Nutr 2021; 151: 1231–40.

Yan F, Eshak ES, Shirai K, et al. Soy Intake and Risk of Type 2 Diabetes Among Japanese Men and Women: JACC Study. Front Nutr 2021; 8: 813742.

Viguiliouk E, Glenn AJ, Nishi SK, et al. Associations between Dietary Pulses Alone or with Other Legumes and Cardiometabolic Disease Outcomes: An Umbrella Review and Updated Systematic Review and Meta-analysis of Prospective Cohort Studies. Adv Nutr 2019; 10: S308–19.

Martini D, Godos J, Marventano S, et al. Nut and legume consumption and human health: an umbrella review of observational studies. Int J Food Sci Nutr 2021; 72: 871–8.

Li N, Wu X, Zhuang W, et al. Soy and Isoflavone Consumption and Multiple Health Outcomes: Umbrella Review of Systematic Reviews and Meta-Analyses of Observational Studies and Randomized Trials in Humans. Mol Nutr Food Res. 2020; 64. DOI:10.1002/mnfr.201900751.

Wan Y, Zheng J, Wang F, Li D. Fish, long chain omega-3 polyunsaturated fatty acids consumption, and risk of all-cause mortality: a systematic review and dose-response meta-analysis from 23 independent prospective cohort studies. Asia Pac J Clin Nutr 2017; 26: 939–56.

Jayedi A, Shab-Bidar S, Eimeri S, Djafarian K. Fish consumption and risk of all-cause and cardiovascular mortality: a dose-response meta-analysis of prospective observational studies. Public Health Nutr 2018; 21: 1297–306.

Jiang L, Wang J, Xiong K, Xu L, Zhang B, Ma A. Intake of Fish and Marine n-3 Polyunsaturated Fatty Acids and Risk of Cardiovascular Disease Mortality: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2021; 13. DOI:10.3390/nu13072342.

Zheng J, Huang T, Yu Y, Hu X, Yang B, Li D. Fish consumption and CHD mortality: an updated meta-analysis of seventeen cohort studies. Public Health Nutr 2012; 15: 725–37.

Li Y, Zhou C, Pei H, et al. Fish consumption and incidence of heart failure: a meta-analysis of prospective cohort studies. Chin Med J (Engl) 2013; 126: 942–8.

Yu X-F, Zou J, Dong J. Fish consumption and risk of gastrointestinal cancers: a meta-analysis of cohort studies. World J Gastroenterol 2014; 20: 15398–412.

Jayedi A, Zargar MS, Shab-Bidar S. Fish consumption and risk of myocardial infarction: a systematic review and dose-response meta-analysis suggests a regional difference. Nutrition Research. 2019; 62: 1–12.

Zhang B, Xiong K, Cai J, Ma A. Fish Consumption and Coronary Heart Disease: A Meta-Analysis. Nutrients 2020; 12. DOI:10.3390/nu12082278.

Chowdhury R, Stevens S, Gorman D, et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ 2012; 345: e6698.

Zhao W, Tang H, Yang X, et al. Fish Consumption and Stroke Risk: A Meta-Analysis of Prospective Cohort Studies. Journal of Stroke and Cerebrovascular Diseases 2019; 28: 604–11.

Wallin A, Di Giuseppe D, Orsini N, Patel PS, Forouhi NG, Wolk A. Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes: systematic review and meta-analysis of prospective studies. Diabetes Care 2012; 35: 918–29.

Zhang M, Picard-Deland E, Marette A. Fish and marine omega-3 polyunsatured Fatty Acid consumption and incidence of type 2 diabetes: a systematic review and meta-analysis. Int J Endocrinol 2013; 2013: 501015.

Yang X, Li Y, Wang C, et al. Meat and fish intake and type 2 diabetes: Dose–response meta-analysis of prospective cohort studies. Diabetes Metab. 2020; 46: 345–52.

Kim Y-S, Xun P, He K. Fish consumption, long-chain omega-3 polyunsaturated fatty acid intake and risk of metabolic syndrome: a meta-analysis. Nutrients 2015; 7: 2085–100.

Karimi G, Heidari Z, Firouzi S, Haghighatdoost F. A systematic review and meta-analysis of the association between fish consumption and risk of metabolic syndrome. Nutrition, Metabolism and Cardiovascular Diseases 2020; 30: 717–29.

Jayedi A, Shab-Bidar S. Fish Consumption and the Risk of Chronic Disease: An Umbrella Review of Meta-Analyses of Prospective Cohort Studies. Adv Nutr 2020; 11: 1123–33.

Zhang Z, Chen GC, Qin ZZ, Tong X, Li DP, Qin LQ. Poultry and Fish Consumption in Relation to Total Cancer Mortality: A Meta-Analysis of Prospective Studies. Nutr Cancer 2018; 70: 204–12.

Lupoli R, Vitale M, Calabrese I, Giosuè A, Riccardi G, Vaccaro O. White Meat Consumption, All-Cause Mortality, and Cardiovascular Events: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2021; 13. DOI:10.3390/nu13020676.

Papp RE, Hasenegger V, Ekmekcioglu C, Schwingshackl L. Association of poultry consumption with cardiovascular diseases and all-cause mortality: a systematic review and dose response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2021. DOI:10.1080/10408398.2021.1975092.

Kim K, Hyeon J, Lee SA, et al. Role of Total, Red, Processed, and White Meat Consumption in Stroke Incidence and Mortality: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J Am Heart Assoc 2017; 6. DOI:10.1161/JAHA.117.005983.

Guo H, Ding J, Liang J, Zhang Y. Association of Red Meat and Poultry Consumption With the Risk of Metabolic Syndrome: A Meta-Analysis of Prospective Cohort Studies. Front Nutr 2021; 8: 691848.

Kim SR, Kim K, Lee SA, et al. Effect of Red, Processed, and White Meat Consumption on the Risk of Gastric Cancer: An Overall and DoseResponse Meta-Analysis. Nutrients 2019; 11. DOI:10.3390/nu11040826.

Wang X, Lin X, Ouyang YY, et al. Red and processed meat consumption and mortality: dose-response meta-analysis of prospective cohort studies. Public Health Nutr 2016; 19: 893–905.

Zhong VW, Van Horn L, Greenland P, et al. Associations of Processed Meat, Unprocessed Red Meat, Poultry, or Fish Intake With Incident Cardiovascular Disease and All-Cause Mortality. JAMA Intern Med 2020; 180: 503–12.

Iqbal R, Dehghan M, Mente A, et al. Associations of unprocessed and processed meat intake with mortality and cardiovascular disease in 21 countries [Prospective Urban Rural Epidemiology (PURE) Study]: a prospective cohort study. American Journal of Clinical Nutrition 2021; 114: 1049–58.

de Medeiros GCBS, Mesquita GXB, Lima SCVC, et al. Associations of the consumption of unprocessed red meat and processed meat with the incidence of cardiovascular disease and mortality, and the dose-response relationship: A systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. 2022. DOI:10.1080/10408398.2022.2058461.

Zeraatkar D, Johnston BC, Bartoszko J, et al. Effect of lower versus higher red meat intake on cardiometabolic and cancer outcomes a systematic review of randomized trials. Ann Intern Med 2019; 171: 721–31.

Vernooij RWM, Zeraatkar D, Han MA, et al. Patterns of red and processed meat consumption and risk for cardiometabolic and cancer outcomes a systematic review and meta-analysis of cohort studies. Ann Intern Med 2019; 171: 732–41.

Jakobsen MU, Bysted A, Mejborn H, Stockmarr A, Trolle E. Intake of Unprocessed and Processed Meat and the Association with Cardiovascular Disease: An Overview of Systematic Reviews. Nutrients 2021; 13. DOI:10.3390/nu13103303.

Pham NM, Mizoue T, Tanaka K, et al. Meat consumption and colorectal cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol 2014; 44: 641–50.

Zhao Z, Yin Z, Zhao Q. Red and processed meat consumption and gastric cancer risk: a systematic review and meta-analysis. Oncotarget 2017; 8: 30563–75.

Zhao Z, Feng Q, Yin Z, et al. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget 2017; 8: 83306–14.

Diallo A, Deschasaux M, Latino-Martel P, et al. Red and processed meat intake and cancer risk: Results from the prospective NutriNet-Santé cohort study. Int J Cancer 2018; 142: 230–7.

Farvid MS, Stern MC, Norat T, et al. Consumption of red and processed meat and breast cancer incidence: A systematic review and meta-analysis of prospective studies. Int J Cancer 2018; 143: 2787–99.

Zhao Z, Wang F, Chen D, Zhang C. Red and processed meat consumption and esophageal cancer risk: a systematic review and meta-analysis. Clinical and Translational Oncology 2020; 22: 532–45.

Farvid MS, Sidahmed E, Spence ND, Mante Angua K, Rosner BA, Barnett JB. Consumption of red meat and processed meat and cancer incidence: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 2021; 36: 937–51.

Nouri-Majd S, Salari-Moghaddam A, Aminianfar A, Larijani B, Esmaillzadeh A. Association Between Red and Processed Meat Consumption and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Front Nutr 2022; 9: 801722.

de Souza RJ, Mente A, Maroleanu A, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 2015; 351: h3978.

Wang Q, Afshin A, Yakoob MY, et al. Impact of Nonoptimal Intakes of Saturated, Polyunsaturated, and Trans Fat on Global Burdens of Coronary Heart Disease. J Am Heart Assoc 2016; 5. DOI:10.1161/JAHA.115.002891.

Clifton PM, Keogh JB. A systematic review of the effect of dietary saturated and polyunsaturated fat on heart disease. Nutrition, Metabolism and Cardiovascular Diseases 2017; 27: 1060–80.

Zhu Y, Bo Y, Liu Y. Dietary total fat, fatty acids intake, and risk of cardiovascular disease: a dose-response meta-analysis of cohort studies. Lipids Health Dis 2019; 18: 91.

Mazidi M, Mikhailidis DP, Sattar N, et al. Association of types of dietary fats and all-cause and cause-specific mortality: A prospective cohort study and meta-analysis of prospective studies with 1,164,029 participants. Clinical Nutrition 2020; 39: 3677–86.

Duarte C, Boccardi V, Amaro Andrade P, Souza Lopes AC, Jacques PF. Dairy versus other saturated fats source and cardiometabolic risk markers: Systematic review of randomized controlled trials. Crit Rev Food Sci Nutr. 2021; 61: 450–61.

Aldaya MM, Ibañez FC, Domínguez-Lacueva P, et al. Indicators and Recommendations for Assessing Sustainable Healthy Diets. Foods 2021; 10. DOI:10.3390/foods10050999.

Giromini C, Givens DI. Benefits and Risks Associated with Meat Consumption during Key Life Processes and in Relation to the Risk of Chronic Diseases. Foods 2022; 11. DOI:10.3390/foods11142063.

Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med 2016; 51: 16–30.

Timon CM, O’Connor A, Bhargava N, Gibney ER, Feeney EL. Dairy Consumption and Metabolic Health. Nutrients 2020; 12. DOI:10.3390/nu12103040.

Dietary Guidelines for Americans 2020-2025, Ninth Edition. USDA, 2020 https://www.dietaryguidelines.gov/sites/default/files/2021-03/Dietary_Guidelines_for_Americans-2020-2025.pdf (accessed May 28, 2024).

Cena H, Calder PC. Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020; 12. DOI:10.3390/nu12020334.

Lichtenstein AH, Appel LJ, Vadiveloo M, et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation 2021; 144: e472–87.

Yip CSC, Lam W, Fielding R. A summary of meat intakes and health burdens. Eur J Clin Nutr 2018; 72: 18–29.

Abete I, Romaguera D, Vieira AR, Lopez De Munain A, Norat T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: A meta-analysis of cohort studies. British Journal of Nutrition 2014; 112: 762–75.

Chen GC, Lv DB, Pang Z, Liu QF. Red and processed meat consumption and risk of stroke: A meta-analysis of prospective cohort studies. Eur J Clin Nutr 2013; 67: 91–5.

Zhang X, Liang S, Chen X, et al. Red/processed meat consumption and noncancer-related outcomes in humans: Umbrella review. British Journal of Nutrition. 2022. DOI:10.1017/S0007114522003415.

Li F, Duan F, Zhao X, Song C, Cui S, Dai L. Red Meat and Processed Meat Consumption and Nasopharyngeal Carcinoma Risk: A Dose-response Meta-analysis of Observational Studies. Nutr Cancer 2016; 68: 1034–43.

Xu X, Yu E, Gao X, et al. Red and processed meat intake and risk of colorectal adenomas: a meta-analysis of observational studies. Int J Cancer 2013; 132: 437–48.

Norat T, Lukanova A, Ferrari P, Riboli E. Meat consumption and colorectal cancer risk: dose-response meta-analysis of epidemiological studies. Int J Cancer 2002; 98: 241–56.

Larsson SC, Wolk A. Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. Int J Cancer 2006; 119: 2657–64.

Chan DSM, Lau R, Aune D, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One 2011; 6: e20456.

Schwingshackl L, Schwedhelm C, Hoffmann G, et al. Food groups and risk of colorectal cancer. Int J Cancer 2018; 142: 1748–58.

Wu J, Zeng R, Huang J, et al. Dietary Protein Sources and Incidence of Breast Cancer: A Dose-Response Meta-Analysis of Prospective Studies. Nutrients 2016; 8. DOI:10.3390/nu8110730.Fan M, Li Y, Wang C, et al. Dietary Protein Consumption and the Risk of Type 2 Diabetes: ADose-Response Meta-Analysis of Prospective Studies. Nutrients 2019; 11. DOI:10.3390/nu11112783.

Larsson SC, Orsini N. Red meat and processed meat consumption and all-cause mortality: A meta-analysis. Am J Epidemiol 2014; 179: 282–9.

Quan W, Xu Y, Luo J, et al. Association of dietary meat consumption habits with neurodegenerative cognitive impairment: an updated systematic review and dose-response meta-analysis of 24 prospective cohort studies. Food Funct 2022; 13: 12590–601.

Zhao Z, Yin Z, Hang Z, Zhang C, Zhao Q. Association between red and processed meat intake and colorectal adenoma incidence and recurrence: a systematic review and meta-analysis. Oncotarget 2018; 9: 32373–82.

Crippa A, Larsson SC, Discacciati A, Wolk A, Orsini N. Red and processed meat consumption and risk of bladder cancer: a dose-response meta-analysis of epidemiological studies. Eur J Nutr 2018; 57: 689–701.

Salari-Moghaddam A, Milajerdi A, Larijani B, Esmaillzadeh A. Processed red meat intake and risk of COPD: A systematic review and dose-response meta-analysis of prospective cohort studies. Clin Nutr 2019; 38: 1109–16.

Xu L, Lam TH, Jiang CQ, et al. Egg consumption and the risk of cardiovascular disease and all-cause mortality: Guangzhou Biobank Cohort Study and meta-analyses. Eur J Nutr 2019; 58: 785–96.

Zhong VW, Van Horn L, Cornelis MC, et al. Associations of Dietary Cholesterol or Egg Consumption With Incident Cardiovascular Disease and Mortality. JAMA 2019; 321: 1081–95.

Xia X, Liu F, Yang X, et al. Associations of egg consumption with incident cardiovascular disease and all-cause mortality. Sci China Life Sci 2020; 63: 1317–27.

Mousavi SM, Zargarzadeh N, Rigi S, et al. Egg Consumption and Risk of All-Cause and Cause-Specific Mortality: A Systematic Review and Dose-Response Meta-analysis of Prospective Studies. Adv Nutr 2022; 13: 1762–73.

Zhao B, Gan L, Graubard BI, Männistö S, Albanes D, Huang J. Associations of Dietary Cholesterol, Serum Cholesterol, and Egg Consumption With Overall and Cause-Specific Mortality: Systematic Review and Updated Meta-Analysis. Circulation 2022; 145: 1506–20.

Darooghegi Mofrad M, Naghshi S, Lotfi K, et al. Egg and Dietary Cholesterol Intake and Risk of All-Cause, Cardiovascular, and Cancer Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Front Nutr 2022; 9: 878979.

Alexander DD, Miller PE, Vargas AJ, Weed DL, Cohen SS. Meta-analysis of Egg Consumption and Risk of Coronary Heart Disease and Stroke. J Am Coll Nutr. 2016; 35: 704–16.

Qin C, Lv J, Guo Y, et al. Associations of egg consumption with cardiovascular disease in a cohort study of 0.5 million Chinese adults. Heart 2018; 104: 1756–63.

Drouin-Chartier J-P, Chen S, Li Y, et al. Egg consumption and risk of cardiovascular disease: three large prospective US cohort studies, systematic review, and updated meta-analysis. BMJ 2020; 368: m513.

Mah E, Chen C-YO, Liska DJ. The effect of egg consumption on cardiometabolic health outcomes: an umbrella review. Public Health Nutr 2020; 23: 935–55.

Krittanawong C, Narasimhan B, Wang Z, et al. Association Between Egg Consumption and Risk of Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. American Journal of Medicine 2021; 134: 76-83.e2.

Godos J, Micek A, Brzostek T, et al. Egg consumption and cardiovascular risk: a dose-response meta-analysis of prospective cohort studies. Eur J Nutr 2021; 60: 1833–62.

Nakamura Y, Iso H, Kita Y, et al. Egg consumption, serum total cholesterol concentrations and coronary heart disease incidence: Japan Public Health Center-based prospective study. Br J Nutr 2006; 96: 921–8.

Rong Y, Chen L, Zhu T, et al. Egg consumption and risk of coronary heart disease and stroke: dose-response meta-analysis of prospective cohort studies. BMJ 2013; 346: e8539.

Tang H, Cao Y, Yang X, Zhang Y. Egg Consumption and Stroke Risk: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Front Nutr 2020; 7: 153.

Drouin-Chartier J-P, Schwab AL, Chen S, et al. Egg consumption and risk of type 2 diabetes: findings from 3 large US cohort studies of men and women and a systematic review and meta-analysis of prospective cohort studies. Am J Clin Nutr 2020; 112: 619–30.

Rouhani MH, Rashidi-Pourfard N, Salehi-Abargouei A, Karimi M, Haghighatdoost F. Effects of Egg Consumption on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J Am Coll Nutr. 2018; 37: 99–110.

Li M-Y, Chen J-H, Chen C, Kang Y-N. Association between Egg Consumption and Cholesterol Concentration: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutrients 2020; 12. DOI:10.3390/nu12071995.

Mesas AE, Garrido-Miguel M, Fernández-Rodríguez R, et al. Egg Consumption and Blood Lipid Parameters According to the Presence of Chronic Metabolic Disorders: The EVIDENT II Study. J Clin Endocrinol Metab 2022; 107: e963–72.

Ratajczak AE, Zawada A, Rychter AM, Dobrowolska A, Krela-Kaźmierczak I. Milk and Dairy Products: Good or Bad for Human Bone? Practical Dietary Recommendations for the Prevention and Management of Osteoporosis. Nutrients 2021; 13. DOI:10.3390/nu13041329.

Rizzoli R. Dairy products and bone health. Aging Clin Exp Res 2022; 34: 9–24.

Thorning TK, Raben A, Tholstrup T, Soedamah-Muthu SS, Givens I, Astrup A. Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr Res 2016; 60: 32527.

Van Den Heuvel EGHM, Steijns JMJM. Dairy products and bone health: How strong is the scientific evidence? Nutr Res Rev 2018; 31: 164–78.

Shi Y, Zhan Y, Chen Y, Jiang Y. Effects of dairy products on bone mineral density in healthy postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Arch Osteoporos 2020; 15: 48.

Wallace TC, Bailey RL, Lappe J, et al. Dairy intake and bone health across the lifespan: a systematic review and expert narrative. Crit Rev Food Sci Nutr. 2021; 61: 3661–707.

Soedamah-Muthu SS, Ding EL, Al-Delaimy WK, et al. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr 2011; 93: 158–71.

Guo J, Astrup A, Lovegrove JA, Gijsbers L, Givens DI, Soedamah-Muthu SS. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol 2017; 32: 269–87.

Cavero-Redondo I, Alvarez-Bueno C, Sotos-Prieto M, Gil A, Martinez-Vizcaino V, Ruiz JR. Milk and Dairy Product Consumption and Risk of Mortality: An Overview of Systematic Reviews and Meta-Analyses. Adv Nutr 2019; 10: S97–104.

Lu Y, Sugawara Y, Matsuyama S, Fukao A, Tsuji I. Association of dairy intake with all-cause, cancer, and cardiovascular disease mortality in Japanese adults: a 25-year population-based cohort. Eur J Nutr 2022; 61: 1285–97.

Kondo I, Ojima T, Nakamura M, et al. Consumption of dairy products and death from cardiovascular disease in the Japanese general population: the NIPPON DATA80. J Epidemiol 2013; 23: 47–54.

Qin L-Q, Xu J-Y, Han S-F, Zhang Z-L, Zhao Y-Y, Szeto IM. Dairy consumption and risk of cardiovascular disease: an updated meta-analysis of prospective cohort studies. Asia Pac J Clin Nutr 2015; 24: 90–100.

Alexander DD, Bylsma LC, Vargas AJ, et al. Dairy consumption and CVD: A systematic review and meta-analysis. British Journal of Nutrition 2016; 115: 737–50.

Lu W, Chen H, Niu Y, Wu H, Xia D, Wu Y. Dairy products intake and cancer mortality risk: a meta-analysis of 11 population-based cohort studies. Nutr J 2016; 15: 91.

Fontecha J, Calvo MV, Juarez M, Gil A, Martínez-Vizcaino V. Milk and Dairy Product Consumption and Cardiovascular Diseases: An Overview of Systematic Reviews and Meta-Analyses. Adv Nutr 2019; 10: S164–89.

Giosuè A, Calabrese I, Vitale M, Riccardi G, Vaccaro O. Consumption of Dairy Foods and Cardiovascular Disease: A Systematic Review. Nutrients 2022; 14. DOI:10.3390/nu14040831.

Chen Z, Ahmed M, Ha V, et al. Dairy Product Consumption and Cardiovascular Health: a Systematic Review and Meta-Analysis of Prospective Cohort Studies. Adv Nutr 2021; 13: 439–54.

Tanno K, Yonekura Y, Okuda N, et al. Association between Milk Intake and Incident Stroke among Japanese Community Dwellers: The Iwate-KENCO Study. Nutrients 2021; 13. DOI:10.3390/nu13113781.

Gao D, Ning N, Wang C, et al. Dairy products consumption and risk of type 2 diabetes: systematic review and dose-response meta-analysis. PLoS One 2013; 8: e73965.

Soedamah-Muthu SS, Verberne LDM, Ding EL, Engberink MF, Geleijnse JM. Dairy consumption and incidence of hypertension: a dose-response meta-analysis of prospective cohort studies. Hypertension 2012; 60: 1131–7.

Feng Y, Zhao Y, Liu J, et al. Consumption of Dairy Products and the Risk of Overweight or Obesity, Hypertension, and Type 2 Diabetes Mellitus: A Dose-Response Meta-Analysis and Systematic Review of Cohort Studies. Adv Nutr 2022; 13: 2165–79.

Chen G-C, Szeto IMY, Chen L-H, et al. Dairy products consumption and metabolic syndrome in adults: systematic review and meta-analysis of observational studies. Sci Rep 2015; 5: 14606.

Kim Y, Je Y. Dairy consumption and risk of metabolic syndrome: A meta-analysis. Diabetic Medicine 2016; 33: 428–40.

Lee M, Lee H, Kim J. Dairy food consumption is associated with a lower risk of the metabolic syndrome and its components: a systematic review and meta-analysis. British Journal of Nutrition. 2018; 120: 373–84.

Kabisch S, Meyer NMT, Honsek C, et al. Fasting Glucose State Determines Metabolic Response to Supplementation with Insoluble Cereal Fibre: A Secondary Analysis of the Optimal Fibre Trial (OptiFiT). Nutrients 2019; 11. DOI:10.3390/nu11102385.

Mena-Sánchez G, Becerra-Tomás N, Babio N, Salas-Salvadó J. Dairy Product Consumption in the Prevention of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Adv Nutr 2019; 10: S144–53.

Aune D, Norat T, Romundstad P, Vatten LJ. Dairy products and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. American Journal of Clinical Nutrition 2013; 98: 1066–83.

Alvarez-Bueno C, Cavero-Redondo I, Martinez-Vizcaino V, Sotos-Prieto M, Ruiz JR, Gil A. Effects of Milk and Dairy Product Consumption on Type 2 Diabetes: Overview of Systematic Reviews and Meta-Analyses. Adv Nutr 2019; 10: S154–63.

Poddar KH, Hosig KW, Nickols-Richardson SM, Anderson ES, Herbert WG, Duncan SE. Low-Fat Dairy Intake and Body Weight and Composition Changes in College Students. J Am Diet Assoc 2009; 109: 1433–8.

Ilich JZ, Kelly OJ, Liu P-Y, et al. Role of Calcium and Low-Fat Dairy Foods in Weight-Loss Outcomes Revisited: Results from the Randomized Trial of Effects on Bone and Body Composition in Overweight/Obese Postmenopausal Women. Nutrients 2019; 11. DOI:10.3390/nu11051157.

Yang M, Kenfield SA, Van Blarigan EL, et al. Dairy intake after prostate cancer diagnosis in relation to disease-specific and total mortality. Int J Cancer 2015; 137: 2462–9.

Tat D, Kenfield SA, Cowan JE, et al. Milk and other dairy foods in relation to prostate cancer recurrence: Data from the cancer of the prostate strategic urologic research endeavor (CaPSURETM). Prostate 2018; 78: 32–9.

図⑭出典

食品表示法に基づく栄養成分表示のためのガイドライン 第4版令和4年5月消費者庁 https://www.caa.go.jp/policies/policy/food_labeling/nutrient_declearation/business/assets/food_labeling_cms206_20220531_08.pdf(accessed May 28, 2024).

図⑮出典

日本人の食事摂取基準(2020年版). 厚生労働省. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/syokuji_kijyun.html(accessed May 28, 2024).

習慣④ 身体活動ー座る時間を減らし、動く時間を増やす

健康づくりのための⾝体活動‧運動ガイド2023 厚⽣労働省https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/undou/index.html(accessed May 28, 2024).

Physical Activity WHO https://www.who.int/news-room/fact-sheets/detail/physical-activity(accessed May 28, 2024).

de Rezende LFM, Rey-López JP, Matsudo VKR, do Carmo Luiz O. Sedentary behavior and health outcomes among older adults: a systematic review. BMC Public Health 2014; 14: 333.

Diaz KM, Duran AT, Colabianchi N, Judd SE, Howard VJ, Hooker SP. Potential Effects on Mortality of Replacing Sedentary Time With Short Sedentary Bouts or Physical Activity: A National Cohort Study. Am J Epidemiol 2019; 188: 537–44.

Millard LAC, Tilling K, Gaunt TR, Carslake D, Lawlor DA. Association of physical activity intensity and bout length with mortality: An observational study of 79,503 UK Biobank participants. PLoS Med 2021; 18: e1003757.

Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ Res. 2019; 124: 799–815.

Bellettiere J, LaMonte MJ, Evenson KR, et al. Sedentary behavior and cardiovascular disease in older women: The Objective Physical Activity and Cardiovascular Health (OPACH) Study. Circulation 2019; 139: 1036–46.

Qi Q, Strizich G, Merchant G, et al. Objectively Measured Sedentary Time and Cardiometabolic Biomarkers in US Hispanic/Latino Adults: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Circulation 2015; 132: 1560–9.

Hooker SP, Diaz KM, Blair SN, et al. Association of Accelerometer-Measured Sedentary Time and Physical Activity With Risk of Stroke Among US Adults. JAMA Netw Open 2022; 5: e2215385.

Patel A V, Friedenreich CM, Moore SC, et al. American College of Sports Medicine Roundtable Report on Physical Activity, Sedentary Behavior, and Cancer Prevention and Control. Med Sci Sports Exerc 2019; 51: 2391–402.

Gilchrist SC, Howard VJ, Akinyemiju T, et al. Association of Sedentary Behavior With Cancer Mortality in Middle-aged and Older US Adults. JAMA Oncol 2020; 6: 1210–7.

Hermelink R, Leitzmann MF, Markozannes G, et al. Sedentary behavior and cancer-an umbrella review and meta-analysis. Eur J Epidemiol 2022; 37: 447–60.

Diaz KM, Goldsmith J, Greenlee H, et al. Prolonged, Uninterrupted Sedentary Behavior and Glycemic Biomarkers Among US Hispanic/Latino Adults: The HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Circulation 2017; 136: 1362–73.

Cavallo FR, Golden C, Pearson-Stuttard J, Falconer C, Toumazou C. The association between sedentary behaviour, physical activity and type 2 diabetes markers: A systematic review of mixed analytic approaches. PLoS One 2022; 17: e0268289.

Chen S, Chen T, Kishimoto H, Yatsugi H, Kumagai S. Associations of Objectively Measured Patterns of Sedentary Behavior and Physical Activity with Frailty Status Screened by The Frail Scale in Japanese Community-Dwelling Older Adults. J Sports Sci Med 2020; 19: 166–74.

Rojer AGM, Ramsey KA, Amaral Gomes ES, et al. Objectively assessed physical activity and sedentary behavior and global cognitive function in older adults: a systematic review. Mech Ageing Dev 2021; 198: 111524.

Huang SY, Li YZ, Zhang YR, et al. Sleep, physical activity, sedentary behavior, and risk of incident dementia: a prospective cohort study of 431,924 UK Biobank participants. Mol Psychiatry 2022; 27: 4343–54.

de Rezende LFM, Rodrigues Lopes M, Rey-López JP, Matsudo VKR, Luiz O do C. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One 2014; 9: e105620.

Biswas A, Oh PI, Faulkner GE, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults a systematic review and meta-analysis. Ann Intern Med. 2015; 162: 123–32.

Park JH, Moon JH, Kim HJ, Kong MH, Oh YH. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J Fam Med 2020; 41: 365–73.

Kinoshita K, Ozato N, Yamaguchi T, et al. Association of sedentary behaviour and physical activity with cardiometabolic health in Japanese adults. Sci Rep 2022; 12: 2262.

Patterson R, McNamara E, Tainio M, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol 2018; 33: 811–29.

628     Ekelund U, Brown WJ, Steene-Johannessen J, et al. Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850 060 participants. Br J Sports Med 2019; 53: 886–94.

Xu C, Furuya-Kanamori L, Liu Y, et al. Sedentary Behavior, Physical Activity, and All-Cause Mortality: Dose-Response and Intensity Weighted Time-Use Meta-analysis. J Am Med Dir Assoc 2019; 20: 1206-1212.e3.

Salinas-Rodríguez A, Manrique-Espinoza B, Palazuelos-González R, Rivera-Almaraz A, Jáuregui A. Physical activity and sedentary behavior trajectories and their associations with quality of life, disability, and all-cause mortality. Eur Rev Aging Phys Act 2022; 19: 13.

Zhou W, Yan W, Wang T, et al. Independent and joint association of physical activity and sedentary behavior on all-cause mortality. Chin Med J (Engl) 2021; 134: 2857–64.

Zhao M, Veeranki SP, Li S, Steffen LM, Xi B. Beneficial associations of low and large doses of leisure time physical activity with all-cause, cardiovascular disease and cancer mortality: a national cohort study of 88,140 US adults. Br J Sports Med 2019; 53: 1405–11.

Andersen K, Mariosa D, Adami HO, et al. Dose-response relationship of total and leisure time physical activity to risk of heart failure a prospective cohort study. Circ Heart Fail 2014; 7: 701–8.

Pandey A, Garg S, Khunger M, et al. Dose-Response Relationship Between Physical Activity and Risk of Heart Failure: A Meta-Analysis. Circulation 2015; 132: 1786–94.

Sattelmair J, Pertman J, Ding EL, Kohl HW, Haskell W, Lee I-M. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation 2011; 124: 789–95.

He D, Xi B, Xue J, Huai P, Zhang M, Li J. Association between leisure time physical activity and metabolic syndrome: A meta-analysis of prospective cohort studies. Endocrine 2014; 46: 231–40.

Zhang D, Liu X, Liu Y, et al. Leisure-time physical activity and incident metabolic syndrome: a systematic review and dose-response meta-analysis of cohort studies. Metabolism. 2017; 75: 36–44.

Li Y, Gu M, Jing F, et al. Association between physical activity and all cancer mortality: Dose-response meta-analysis of cohort studies. Int J Cancer 2016; 138: 818–32.

Li T, Wei S, Shi Y, et al. The dose-response effect of physical activity on cancer mortality: findings from 71 prospective cohort studies. Br J Sports Med 2016; 50: 339–45.

Matthews CE, Moore SC, Arem H, et al. Amount and Intensity of Leisure-Time Physical Activity and Lower Cancer Risk. J Clin Oncol 2020; 38: 686–97.

Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis. Eur J Epidemiol 2015; 30: 529–42.

Smith AD, Crippa A, Woodcock J, Brage S. Physical activity and incident type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia 2016; 59: 2527–45.

Liu X, Zhang D, Liu Y, et al. Dose-Response Association between Physical Activity and Incident Hypertension: A Systematic Review and Meta-Analysis of Cohort Studies. Hypertension 2017; 69: 813–20.

Xu W, Wang HF, Wan Y, Tan C-C, Yu J-T, Tan L. Leisure time physical activity and dementia risk: a dose-response meta-analysis of prospective studies. BMJ Open 2017; 7: e014706.

Sanders LMJ, Hortobágyi T, la Bastide-van Gemert S, van der Zee EA, van Heuvelen MJG. Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: A systematic review and meta-analysis. PLoS One 2019; 14: e0210036.

Boongird P, Chamnan P, Laptikultham S, et al. Dose–response relationship between physical exercise and risk of physician-diagnosed dementia in 206 073 Thai community-dwelling men and women: HCUR study. Eur J Neurol 2020; 27: 1879–86.

Petermann-Rocha F, Lyall DM, Gray SR, et al. Dose-response association between device-measured physical activity and incident dementia: a prospective study from UK Biobank. BMC Med 2021; 19: 305.

Aghjayan SL, Bournias T, Kang C, et al. Aerobic exercise improves episodic memory in late adulthood: a systematic review and meta-analysis. Communications medicine 2022; 2: 15.

Wu W, Ding D, Zhao Q, et al. Dose-response relationship between late-life physical activity and incident dementia: A pooled analysis of 10 cohort studies of memory in an international consortium. Alzheimer’s and Dementia 2023; 19: 107–22.

Kim SY, Jeon SW, Shin DW, Oh KS, Shin YC, Lim SW. Association between physical activity and depressive symptoms in general adult populations: An analysis of the dose-response relationship. Psychiatry Res 2018; 269: 258–63.

Kim S-Y, Jeon S-W, Lee MY, et al. The Association between Physical Activity and Anxiety Symptoms for General Adult Populations: An Analysis of the Dose-Response Relationship. Psychiatry Investig 2020; 17: 29–36.

Guo Z, Li R, Lu S. Leisure-time physical activity and risk of depression: A dose-response meta-analysis of prospective cohort studies. Medicine 2022; 101: e29917.

Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016; 354: i3857.

Warburton DER, Bredin SSD. Health benefits of physical activity: A systematic review of current systematic reviews. Curr Opin Cardiol. 2017; 32: 541–56.

Frank HR, Mulder H, Sriram K, et al. The Dose–Response Relationship Between Physical Activity and Cardiometabolic Health in Young Adults. Journal of Adolescent Health 2020; 67: 201–8.

Sriram K, Mulder HS, Frank HR, et al. The Dose-Response Relationship Between Physical Activity and Cardiometabolic Health in Adolescents. Am J Prev Med 2021; 60: 95–103.

Jakicic JM, Kraus WE, Powell KE, et al. Association between Bout Duration of Physical Activity and Health: Systematic Review. Med Sci Sports Exerc 2019; 51: 1213–9.

Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 2020; 54: 1451–62.

e-ヘルスネット レジスタンス運動. 厚生労働省. https://www.e-healthnet.mhlw.go.jp/information/dictionary/exercise/ys-058.html (accessed May 28, 2024).

Giovannucci EL, Rezende LFM, Lee DH. Muscle-strengthening activities and risk of cardiovascular disease, type 2 diabetes, cancer and mortality: A review of prospective cohort studies. J Intern Med. 2021; 290: 789–805.

Momma H, Kawakami R, Honda T, Sawada SS. Muscle-strengthening activities are associated with lower risk and mortality in major non-communicable diseases: a systematic review and meta-analysis of cohort studies. Br J Sports Med 2022; 56: 755–63.

Shailendra P, Baldock KL, Li LSK, Bennie JA, Boyle T. Resistance Training and Mortality Risk: A Systematic Review and Meta-Analysis. Am J Prev Med. 2022; 63: 277–85.

Zunner BEM, Wachsmuth NB, Eckstein ML, et al. Myokines and Resistance Training: A Narrative Review. Int J Mol Sci 2022; 23. DOI:10.3390/ijms23073501.

Gomarasca M, Banfi G, Lombardi G. Myokines: The endocrine coupling of skeletal muscle and bone. Adv Clin Chem 2020; 94: 155–218.

Huh JY. The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2018; 41: 14–29.

Corrigendum to: ‘Muscle-Organ Crosstalk: The Emerging Roles of Myokines’. Endocr Rev 2021; 42: 97–9.

McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-Up Strategies for Sport and Exercise: Mechanisms and Applications. Sports Med 2015; 45: 1523–46.

Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab 2016; 41: 1–11.

Ding L, Luo J, Smith DM, et al. Effectiveness of Warm-Up Intervention Programs to Prevent Sports Injuries among Children and Adolescents: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2022; 19. DOI:10.3390/ijerph19106336.

D’Aurea CVR, Poyares D, Passos GS, et al. Effects of resistance exercise training and stretching on chronic insomnia. Braz J Psychiatry 2019; 41: 51–7.

Sudo M, Ando S. Effects of Acute Stretching on Cognitive Function and Mood States of Physically Inactive Young Adults. Percept Mot Skills 2020; 127: 142–53.

McHugh MP, Cosgrave CH. To stretch or not to stretch: the role of stretching in injury prevention and performance. Scand J Med Sci Sports 2010; 20: 169–81.

Simic L, Sarabon N, Markovic G. Does pre-exercise static stretching inhibit maximal muscular performance? A meta-analytical review. Scand J Med Sci Sports 2013; 23: 131–48.

Morton SK, Whitehead JR, Brinkert RH, Caine DJ. Resistance training vs. static stretching: effects on flexibility and strength. J Strength Cond Res 2011; 25: 3391–8.

Konrad A, Stafilidis S, Tilp M. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties. Scand J Med Sci Sports 2017; 27: 1070–80.

Behm DG, Chaouachi A. A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol 2011; 111: 2633–51.

Kallerud H, Gleeson N. Effects of stretching on performances involving stretch-shortening cycles. Sports Med 2013; 43: 733–50.

Chaabene H, Behm DG, Negra Y, Granacher U. Acute Effects of Static Stretching on Muscle Strength and Power: An Attempt to Clarify Previous Caveats. Front Physiol 2019; 10: 1468.

Behm DG, Alizadeh S, Daneshjoo A, Konrad A. Potential Effects of Dynamic Stretching on Injury Incidence of Athletes: A Narrative Review of Risk Factors. Sports Med 2023; 53: 1359–73.

Blazevich AJ, Gill ND, Kvorning T, et al. No Effect of Muscle Stretching within a Full, Dynamic Warm-up on Athletic Performance. Med Sci Sports Exerc 2018; 50: 1258–66.

Bacurau RFP, Monteiro GA, Ugrinowitsch C, Tricoli V, Cabral LF, Aoki MS. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. J Strength Cond Res 2009; 23: 304–8.

Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle performance: a systematic review. Med Sci Sports Exerc 2012; 44: 154–64.

Arntz F, Markov A, Behm DG, et al. Chronic Effects of Static Stretching Exercises on Muscle Strength and Power in Healthy Individuals Across the Lifespan: A Systematic Review with Multi-level Meta-analysis. Sports Med 2023; 53: 723–45.

図⑯出典

Bauman A, Ainsworth BE, Sallis JF, et al. The descriptive epidemiology of sitting. A 20-country comparison using the International Physical Activity Questionnaire (IPAQ). Am J Prev Med 2011; 41: 228–35.

図⑰出典

健康づくりのための⾝体活動‧運動ガイド2023 厚⽣労働省https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/undou/index.html(accessed May 28, 2024).

Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 2020; 54: 1451–62.

習慣⑤ 飲酒ー飲まない、飲んでも、控えめに

健康に配慮した飲酒に関するガイドライン 厚⽣労働省 https://www.mhlw.go.jp/content/12200000/001211974.pdf(accessed May 29, 2024).

健康日本21(第三次) 厚生労働省 https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/kenkounippon21_00006.html(accessed May 25, 2024).

Simon L, Souza-Smith FM, Molina PE. Alcohol-Associated Tissue Injury: Current Views on Pathophysiological Mechanisms. Annu Rev Physiol 2022; 84: 87–112.

Simon L, Molina PE. Cellular Bioenergetics: Experimental Evidence for Alcohol-induced Adaptations. Function (Oxf) 2022; 3: zqac039.

Lin Y, Kikuchi S, Tamakoshi A, et al. Alcohol consumption and mortality among middle-aged and elderly Japanese men and women. Ann Epidemiol 2005; 15: 590–7.

Marugame T, Yamamoto S, Yoshimi I, Sobue T, Inoue M, Tsugane S. Patterns of alcohol drinking and all-cause mortality: Results from a large-scale population-based cohort study in Japan. Am J Epidemiol 2007; 165: 1039–46.

Roerecke M, Rehm J. Alcohol consumption, drinking patterns, and ischemic heart disease: a narrative review of meta-analyses and a systematic review and meta-analysis of the impact of heavy drinking occasions on risk for moderate drinkers. BMC Med 2014; 12: 182.

Zhang C, Qin Y-Y, Chen Q, et al. Alcohol intake and risk of stroke: a dose-response meta-analysis of prospective studies. Int J Cardiol 2014; 174: 669–77.

Ikehara S, Iso H. Alcohol consumption and risks of hypertension and cardiovascular disease in Japanese men and women. Hypertension Research. 2020; 43: 477–81.

Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer 2015; 112: 580–93.

Im PK, Millwood IY, Kartsonaki C, et al. Alcohol drinking and risks of total and site-specific cancers in China: A 10-year prospective study of 0.5 million adults. Int J Cancer 2021; 149: 522–34.

Roerecke M, Shield KD, Higuchi S, et al. Estimates of alcohol-related oesophageal cancer burden in Japan: systematic review and meta-analyses. Bull World Health Organ 2015; 93: 329-338C.

Deng W, Jin L, Zhuo H, Vasiliou V, Zhang Y. Alcohol consumption and risk of stomach cancer: A meta-analysis. Chem Biol Interact 2021; 336: 109365.

Wang Y-T, Gou Y-W, Jin W-W, Xiao M, Fang H-Y. Association between alcohol intake and the risk of pancreatic cancer: a dose-response meta-analysis of cohort studies. BMC Cancer 2016; 16: 212.

Fedirko V, Tramacere I, Bagnardi V, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol 2011; 22: 1958–72.

Rota M, Pasquali E, Bellocco R, et al. Alcohol drinking and cutaneous melanoma risk: a systematic review and dose-risk meta-analysis. Br J Dermatol 2014; 170: 1021–8.

Zhang C, Zhong M. Consumption of beer and colorectal cancer incidence: a meta-analysis of observational studies. Cancer Causes and Control 2015; 26: 549–60.

Shield KD, Soerjomataram I, Rehm J. Alcohol Use and Breast Cancer: A Critical Review. Alcohol Clin Exp Res. 2016; 40: 1166–81.

Sun Q, Xie W, Wang Y, et al. Alcohol consumption by beverage type and risk of breast cancer: A dose-response meta-analysis of prospective cohort studies. Alcohol and Alcoholism. 2020; 55: 246–53.

Knott C, Bell S, Britton A. Alcohol consumption and the risk of type 2 diabetes: A systematic review and Dose-Response Meta-analysis of more than 1.9 million individuals from 38 observational studies. Diabetes Care 2015; 38: 1804–12.

Li XH, Yu FF, Zhou YH, He J. Association between alcohol consumption and the risk of incident type 2 diabetes: A systematic review and dose-response meta-analysis1. American Journal of Clinical Nutrition 2016; 103: 818–29.

Han M. The Dose-Response Relationship between Alcohol Consumption and the Risk of Type 2 Diabetes among Asian Men: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J Diabetes Res 2020; 2020: 1032049.

Rehm J, Taylor B, Mohapatra S, et al. Alcohol as a risk factor for liver cirrhosis: A systematic review and meta-analysis. Drug Alcohol Rev. 2010; 29: 437–45.

Simpson RF, Hermon C, Liu B, et al. Alcohol drinking patterns and liver cirrhosis risk: analysis of the prospective UK Million Women Study. Lancet Public Health 2019; 4: e41–8.

Roerecke M, Vafaei A, Hasan OSM, et al. Alcohol Consumption and Risk of Liver Cirrhosis: A Systematic Review and Meta-Analysis. Am J Gastroenterol 2019; 114: 1574–86.

Im PK, Millwood IY, Kartsonaki C, et al. Alcohol drinking and risks of liver cancer and non-neoplastic chronic liver diseases in China: a 10-year prospective study of 0.5 million adults. BMC Med 2021; 19: 216.

Mostofsky E, Chahal HS, Mukamal KJ, Rimm EB, Mittleman MA. Alcohol and Immediate Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis. Circulation 2016; 133: 979–87.

GBD 2020 Alcohol Collaborators. Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020. Lancet 2022; 400: 185–235.

図⑱出典

⽇本⾷品標準成分表 2020 年版(⼋訂)⽂部科学省 https://www.mext.go.jp/a_menu/syokuhinseibun/mext_01110.html(accessed May 29, 2024).

習慣⑥ 睡眠ー短すぎず、長すぎない良質な眠りを

健康づくりのための睡眠ガイド2023 厚⽣労働省 https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/suimin/index.html(accessed May 29, 2024).

Fabbri M, Beracci A, Martoni M, Meneo D, Tonetti L, Natale V. Measuring Subjective Sleep Quality: A Review. Int J Environ Res Public Health 2021; 18. DOI:10.3390/ijerph18031082.

Cudney LE, Frey BN, McCabe RE, Green SM. Investigating the relationship between objective measures of sleep and self-report sleep quality in healthy adults: a review. J Clin Sleep Med 2022; 18: 927–36.

Gallicchio L, Kalesan B. Sleep duration and mortality: A systematic review and meta-analysis. J Sleep Res 2009; 18: 148–58.

Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 2010; 33: 585–92.

Yin J, Jin X, Shan Z, et al. Relationship of Sleep Duration With All-Cause Mortality and Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. J Am Heart Assoc 2017; 6. DOI:10.1161/JAHA.117.005947.

Wang C, Bangdiwala SI, Rangarajan S, et al. Association of estimated sleep duration and naps with mortality and cardiovascular events: a study of 116 632 people from 21 countries. Eur Heart J 2019; 40: 1620–9.

Liu TZ, Xu C, Rota M, et al. Sleep duration and risk of all-cause mortality: A flexible, non-linear, meta-regression of 40 prospective cohort studies. Sleep Med Rev. 2017; 32: 28–36.

Krittanawong C, Tunhasiriwet A, Wang Z, et al. Association between short and long sleep durations and cardiovascular outcomes: a systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care 2019; 8: 762–70.

Qin Y, Liu R, Wang Y, et al. Self-Reported Sleep Characteristics Associated with Cardiovascular Disease Among Older Adults Living in Rural Eastern China: A Population-Based Study. Clin Interv Aging 2022; 17: 811–24.

Liu H, Chen G, Wen J, et al. Association between sleep duration and incidence of type 2 diabetes in China: the REACTION study. Chin Med J (Engl) 2022; 135: 1242–8.

Zhou L, Yu K, Yang L, et al. Sleep duration, midday napping, and sleep quality and incident stroke: The Dongfeng-Tongji cohort. Neurology 2020; 94: e345–56.

Kwok CS, Kontopantelis E, Kuligowski G, et al. Self-Reported Sleep Duration and Quality and Cardiovascular Disease and Mortality: A Dose-Response Meta-Analysis. J Am Heart Assoc 2018; 7: e008552.

Svensson T, Saito E, Svensson AK, et al. Association of Sleep Duration With All- and Major-Cause Mortality Among Adults in Japan, China, Singapore, and Korea. JAMA Netw Open 2021; 4: e2122837.

健康日本21(第三次) 厚生労働省 https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/kenkounippon21_00006.html(accessed May 25, 2024).

Consensus Conference Panel, Watson NF, Badr MS, et al. Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society on the Recommended Amount of Sleep for a Healthy Adult: Methodology and Discussion. Sleep 2015; 38: 1161–83.

Consensus Conference Panel, Watson NF, Badr MS, et al. Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society on the Recommended Amount of Sleep for a Healthy Adult: Methodology and Discussion. J Clin Sleep Med 2015; 11: 931–52.

Watson NF, Badr MS, Belenky G, et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015; 38: 843–4.

Consensus Conference Panel, Watson NF, Badr MS, et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. J Clin Sleep Med 2015; 11: 591–2.

Li J, Vitiello M V, Gooneratne NS. Sleep in Normal Aging. Sleep Med Clin 2018; 13: 1–11.

Campbell SS, Murphy PJ. The nature of spontaneous sleep across adulthood. J Sleep Res 2007; 16: 24–32.

Floyd JA, Janisse JJ, Jenuwine ES, Ager JW. Changes in REM-sleep percentage over the adult lifespan. Sleep 2007; 30: 829–36.

Dorffner G, Vitr M, Anderer P. The effects of aging on sleep architecture in healthy subjects. Adv Exp Med Biol 2015; 821: 93–100.

Ikehara S, Iso H, Date C, et al. Association of sleep duration with mortality from cardiovascular disease and other causes for Japanese men and women: the JACC study. Sleep 2009; 32: 295–301.

Gangwisch JE, Heymsfield SB, Boden-Albala B, et al. Sleep duration associated with mortality in elderly, but not middle-aged, adults in a large US sample. Sleep 2008; 31: 1087–96.

da Silva AA, de Mello RGB, Schaan CW, Fuchs FD, Redline S, Fuchs SC. Sleep duration and mortality in the elderly: a systematic review with meta-analysis. BMJ Open 2016; 6: e008119.

He M, Deng X, Zhu Y, Huan L, Niu W. The relationship between sleep duration and all-cause mortality in the older people: an updated and dose-response meta-analysis. BMC Public Health 2020; 20: 1179.

Ren Y, Miao M, Yuan W, Sun J. Sleep duration and all-cause mortality in the elderly in China: a population-based cohort study. BMC Geriatr 2020; 20: 541.

Okuda M, Noda A, Iwamoto K, et al. Effects of long sleep time and irregular sleep-wake rhythm on cognitive function in older people. Sci Rep 2021; 11: 7039.

Winer JR, Deters KD, Kennedy G, et al. Association of Short and Long Sleep Duration With Amyloid-β Burden and Cognition in Aging. JAMA Neurol 2021; 78: 1187–96.

Ashbrook LH, Krystal AD, Fu Y-H, Ptáček LJ. Genetics of the human circadian clock and sleep homeostat. Neuropsychopharmacology 2020; 45: 45–54.

睡眠薬の適正な使⽤と休薬のための診療ガイドライン 厚⽣生労働科学研究班・日本睡眠学会ワーキンググループ作成 https://jssr.jp/files/guideline/suiminyaku-guideline.pdf(accessed May 29, 2024).

Gentry NW, Ashbrook LH, Fu Y-H, Ptáček LJ. Human circadian variations. J Clin Invest 2021; 131. DOI:10.1172/JCI148282.

Serin Y, Acar Tek N. Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance. Ann Nutr Metab 2019; 74: 322–30.

Vasey C, McBride J, Penta K. Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients 2021; 13. DOI:10.3390/nu13103480.

Caliandro R, Streng AA, van Kerkhof LWM, van der Horst GTJ, Chaves I. Social Jetlag and Related Risks for Human Health: A Timely Review. Nutrients 2021; 13. DOI:10.3390/nu13124543.

Touitou Y, Touitou D, Reinberg A. Disruption of adolescents’ circadian clock: The vicious circle of media use, exposure to light at night, sleep loss and risk behaviors. J Physiol Paris. 2016; 110: 467–79.

Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sci. 2017; 173: 94–106.

Aulsebrook AE, Jones TM, Mulder RA, Lesku JA. Impacts of artificial light at night on sleep: A review and prospectus. J Exp Zool A Ecol Integr Physiol 2018; 329: 409–18.

Wahl S, Engelhardt M, Schaupp P, Lappe C, Ivanov I V. The inner clock-Blue light sets the human rhythm. J Biophotonics 2019; 12: e201900102.

Van den Bulck J. Adolescent use of mobile phones for calling and for sending text messages after lights out: results from a prospective cohort study with a one-year follow-up. Sleep 2007; 30: 1220–3.

Munezawa T, Kaneita Y, Osaki Y, et al. The association between use of mobile phones after lights out and sleep disturbances among Japanese adolescents: a nationwide cross-sectional survey. Sleep 2011; 34: 1013–20.

Exelmans L, Van den Bulck J. Bedtime mobile phone use and sleep in adults. Soc Sci Med 2016; 148: 93–101.

Carter B, Rees P, Hale L, Bhattacharjee D, Paradkar MS. Association Between Portable Screen-Based Media Device Access or Use and Sleep Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr 2016; 170: 1202–8.

Moustakbal M, Maataoui SB. A cross-sectional study on sleep length, quality, and mobile phone use among Moroccan adolescents. Pan Afr Med J 2022; 41: 252.

Joshi SC. Sleep latency and sleep disturbances mediates the association between nighttime cell phone use and psychological well-being in college students. Sleep Biol Rhythms 2022; 20: 431–43.

AlShareef SM. The impact of bedtime technology use on sleep quality and excessive daytime sleepiness in adults. Sleep Sci 2022; 15: 318–27.

Stutz J, Eiholzer R, Spengler CM. Effects of Evening Exercise on Sleep in Healthy Participants: A Systematic Review and Meta-Analysis. Sports Medicine. 2019; 49: 269–87.

Youngstedt SD, Ito W, Soares Passos G, Santana MG, Youngstedt JM. Testing the sleep hygiene recommendation against nighttime exercise. Sleep and Breathing 2021; 25: 2189–96.

Boubekri M, Cheung IN, Reid KJ, Wang C-H, Zee PC. Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. J Clin Sleep Med 2014; 10: 603–11.

Boubekri M, Lee J, MacNaughton P, et al. The Impact of Optimized Daylight and Views on the Sleep Duration and Cognitive Performance of Office Workers. Int J Environ Res Public Health 2020; 17. DOI:10.3390/ijerph17093219.

Nagare R, Woo M, MacNaughton P, Plitnick B, Tinianov B, Figueiro M. Access to Daylight at Home Improves Circadian Alignment, Sleep, and Mental Health in Healthy Adults: A Crossover Study. Int J Environ Res Public Health 2021; 18. DOI:10.3390/ijerph18199980.

Burns AC, Saxena R, Vetter C, Phillips AJK, Lane JM, Cain SW. Time spent in outdoor light is associated with mood, sleep, and circadian rhythm-related outcomes: A cross-sectional and longitudinal study in over 400,000 UK Biobank participants. J Affect Disord 2021; 295: 347–52.

Reid KJ, Baron KG, Lu B, Naylor E, Wolfe L, Zee PC. Aerobic exercise improves self-reported sleep and quality of life in older adults with insomnia. Sleep Med 2010; 11: 934–40.

Passos GS, Poyares D, Santana MG, et al. Effects of moderate aerobic exercise training on chronic primary insomnia. Sleep Med 2011; 12: 1018–27.

Yang P-Y, Ho K-H, Chen H-C, Chien M-Y. Exercise training improves sleep quality in middle-aged and older adults with sleep problems: a systematic review. J Physiother 2012; 58: 157–63.

Hartescu I, Morgan K, Stevinson CD. Increased physical activity improves sleep and mood outcomes in inactive people with insomnia: A randomized controlled trial. J Sleep Res 2015; 24: 526–34.

Bonardi JMT, Lima LG, Campos GO, et al. Effect of different types of exercise on sleep quality of elderly subjects. Sleep Med 2016; 25: 122–9.

Kelley GA, Kelley KS. Exercise and sleep: a systematic review of previous meta-analyses. J Evid Based Med 2017; 10: 26–36.

Rubio-Arias JÁ, Marín-Cascales E, Ramos-Campo DJ, Hernandez A V, Pérez-López FR. Effect of exercise on sleep quality and insomnia in middle-aged women: A systematic review and meta-analysis of randomized controlled trials. Maturitas 2017; 100: 49–56.

Kovacevic A, Mavros Y, Heisz JJ, Fiatarone Singh MA. The effect of resistance exercise on sleep: A systematic review of randomized controlled trials. Sleep Med Rev. 2018; 39: 52–68.

Abd El-Kader SM, Al-Jiffri OH. Aerobic exercise affects sleep, psychological wellbeing and immune system parameters among subjects with chronic primary insomnia. Afr Health Sci 2020; 20: 1761–9.

Xie Y, Liu S, Chen X-J, Yu H-H, Yang Y, Wang W. Effects of Exercise on Sleep Quality and Insomnia in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Psychiatry 2021; 12: 664499.

D’Aurea CVR, Frange C, Poyares D, Souza AAL de, Lenza M. Physical exercise as a therapeutic approach for adults with insomnia: systematic review and meta-analysis. Einstein (Sao Paulo) 2022; 20: eAO8058.

Basso JC, Suzuki WA. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plast 2017; 2: 127–52.

Camberos-Barraza J, Camacho-Zamora A, Bátiz-Beltrán JC, et al. Sleep, Glial Function, and the Endocannabinoid System: Implications for Neuroinflammation and Sleep Disorders. Int J Mol Sci 2024; 25. DOI:10.3390/ijms25063160.

Peters KZ, Oleson EB, Cheer JF. A Brain on Cannabinoids: The Role of Dopamine Release in Reward Seeking and Addiction. Cold Spring Harb Perspect Med 2021; 11. DOI:10.1101/cshperspect.a039305.

Wenzel JM, Cheer JF. Endocannabinoid Regulation of Reward and Reinforcement through Interaction with Dopamine and Endogenous Opioid Signaling. Neuropsychopharmacology 2018; 43: 103–15.

Spanagel R. Cannabinoids and the endocannabinoid system in reward processing and addiction: from mechanisms to interventions
. Dialogues Clin Neurosci 2020; 22: 241–50.

Baddenhausen S, Lutz B, Hofmann C. Cannabinoid type-1 receptor signaling in dopaminergic Engrailed-1 expressing neurons modulates motivation and depressive-like behavior. Front Mol Neurosci 2024; 17: 1379889.

Charytoniuk T, Zywno H, Berk K, et al. The Endocannabinoid System and Physical Activity-A Robust Duo in the Novel Therapeutic Approach against Metabolic Disorders. Int J Mol Sci 2022; 23. DOI:10.3390/ijms23063083.

Matei D, Trofin D, Iordan DA, et al. The Endocannabinoid System and Physical Exercise. Int J Mol Sci 2023; 24. DOI:10.3390/ijms24031989.

Dhand R, Sohal H. Good sleep, bad sleep! The role of daytime naps in healthy adults. Curr Opin Pulm Med 2006; 12: 379–82.

Dutheil F, Bessonnat B, Pereira B, et al. Napping and cognitive performance during night shifts: a systematic review and meta-analysis. Sleep 2020; 43. DOI:10.1093/sleep/zsaa109.

Dutheil F, Danini B, Bagheri R, et al. Effects of a Short Daytime Nap on the Cognitive Performance: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health 2021; 18. DOI:10.3390/ijerph181910212.

Mead MP, Huynh P, Le TQ, Irish LA. Temporal Associations Between Daytime Napping and Nocturnal Sleep: An Exploration of Random Slopes. Ann Behav Med 2022; 56: 1101–9.

Mograss M, Abi-Jaoude J, Frimpong E, et al. The effects of napping on night-time sleep in healthy young adults. J Sleep Res 2022; 31: e13578.

Leng Y, Wainwright NWJ, Cappuccio FP, et al. Daytime napping and the risk of all-cause and cause-specific mortality: a 13-year follow-up of a British population. Am J Epidemiol 2014; 179: 1115–24.

Liu X, Zhang Q, Shang X. Meta-analysis of self-reported daytime napping and risk of cardiovascular or all-cause mortality. Med Sci Monit 2015; 21: 1269–75.

Yamada T, Hara K, Shojima N, Yamauchi T, Kadowaki T. Daytime Napping and the Risk of Cardiovascular Disease and All-Cause Mortality: A Prospective Study and Dose-Response Meta-Analysis. Sleep 2015; 38: 1945–53.

Pan Z, Huang M, Huang J, Yao Z, Lin Z. Association of napping and all-cause mortality and incident cardiovascular diseases: a dose–response meta analysis of cohort studies. Sleep Med. 2020; 74: 165–72.

Wang L, Wang K, Liu LJ, et al. Associations of Daytime Napping with Incident Cardiovascular Diseases and Hypertension in Chinese Adults: A Nationwide Cohort Study. Biomed Environ Sci 2022; 35: 22–34.

Leng Y, Cappuccio FP, Surtees PG, Luben R, Brayne C, Khaw K-T. Daytime napping, sleep duration and increased 8-year risk of type 2 diabetes in a British population. Nutr Metab Cardiovasc Dis 2016; 26: 996–1003.

Guo VY, Cao B, Wong CKH, Yu EYT. The association between daytime napping and risk of diabetes: a systematic review and meta-analysis of observational studies. Sleep Med 2017; 37: 105–12.

Lin L, Lu C, Chen W, Guo VY. Daytime Napping and Nighttime Sleep Duration with Incident Diabetes Mellitus: A Cohort Study in Chinese Older Adults. Int J Environ Res Public Health 2021; 18. DOI:10.3390/ijerph18095012.

Cheungpasitporn W, Thongprayoon C, Srivali N, et al. The effects of napping on the risk of hypertension: a systematic review and meta-analysis. J Evid Based Med 2016; 9: 205–12.

Gribble AK, Sayón-Orea C, Bes-Rastrollo M, et al. Risk of Developing Metabolic Syndrome Is Affected by Length of Daily Siesta: Results from a Prospective Cohort Study. Nutrients 2021; 13. DOI:10.3390/nu13114182.

Papandreou C, Díaz-López A, Babio N, et al. Long Daytime Napping Is Associated with Increased Adiposity and Type 2 Diabetes in an Elderly Population with Metabolic Syndrome. J Clin Med 2019; 8. DOI:10.3390/jcm8071053.

Tse LA, Wang C, Rangarajan S, et al. Timing and Length of Nocturnal Sleep and Daytime Napping and Associations With Obesity Types in High-, Middle-, and Low-Income Countries. JAMA Netw Open 2021; 4: e2113775.

Tang X, Yao F, Liu K. Adiposity-related risks among the middle-aged and elderly chinese: The role of siesta and nocturnal sleep duration. Nutr Hosp 2021; 38: 797–806.

Xiao JY, Zhang W Sen, Jiang CQ, et al. Obesity indicators as mediators of association between daytime napping and type 2 diabetes mellitus: the Guangzhou Biobank Cohort Study. BMC Public Health 2022; 22: 56.

Vetter C, Devore EE, Wegrzyn LR, et al. Association Between Rotating Night Shift Work and Risk of Coronary Heart Disease Among Women. JAMA 2016; 315: 1726–34.

Hamazaki Y, Morikawa Y, Nakamura K, et al. The effects of sleep duration on the incidence of cardiovascular events among middle-aged male workers in Japan. Scand J Work Environ Health 2011; 37: 411–7.

習慣⑦ 日光対策ー日焼け対策をしつつ、日に当たる

紫外線環境保健マニュアル2020, 改訂版. 環境省, 2020 https://www.env.go.jp/content/900410650.pdf(accessed May 29, 2024).

Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci 2017; 85: 152–61.

Singer S, Karrer S, Berneburg M. Modern sun protection. Curr Opin Pharmacol. 2019; 46: 24–8.

Furukawa JY, Martinez RM, Morocho-Jácome AL, et al. Skin impacts from exposure to ultraviolet, visible, infrared, and artificial lights–a review. Journal of Cosmetic and Laser Therapy. 2021; 23: 1–7.

Guan LL, Lim HW, Mohammad TF. Sunscreens and Photoaging: A Review of Current Literature. Am J Clin Dermatol 2021; 22: 819–28.

Krutmann J, Schalka S, Watson REB, Wei L, Morita A. Daily photoprotection to prevent photoaging. Photodermatol Photoimmunol Photomed 2021; 37: 482–9.

Solar ultraviolet radiation: assessing the environmental burden of disease at national and local levels. World Health Organization, 2010 https://www.who.int/publications/i/item/9789241599177 (accessed May 29, 2024).

Compendium of WHO and other UN guidance on health and environment, 2022 update. World Health Organization, 2022 https://www.who.int/publications/i/item/WHO-HEP-ECH-EHD-22.01 (accessed May 29, 2024).

Environmental Effects Assessment Panel (EEAP). Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and Interactions with Climate Change: 2022 Assessment Report. 2023 https://ozone.unep.org/system/files/documents/EEAP-2022-Assessment-Report-May2023.pdf (accessed May 4, 2023).

Delea MG, Sclar GD, Woreta M, et al. Collective Efficacy: Development and Validation of a Measurement Scale for Use in Public Health and Development Programmes. Int J Environ Res Public Health 2018; 15. DOI:10.3390/ijerph15102139.

Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci 2008; 30: 87–95.

Taylor CR, Stern RS, Leyden JJ, Gilchrest BA. Photoaging/photodamage and photoprotection. J Am Acad Dermatol 1990; 22: 1–15.

Jenkins G. Molecular mechanisms of skin ageing. 2002 www.elsevier.com/locate/mechagedev.

Gilchrest BA. Skin aging and photoaging: An overview. J Am Acad Dermatol 1989; 21: 610–3.

Shanbhag S, Nayak A, Narayan R, Nayak UY. Anti-aging and Sunscreens: Paradigm Shift in Cosmetics. Adv Pharm Bull 2019; 9: 348–59.

Queirós CS, Freitas JP. Sun Exposure: Beyond the Risks. Dermatol Pract Concept 2019; 9: 249–52.

Alfredsson L, Armstrong BK, Butterfield DA, et al. Insufficient Sun Exposure Has Become a Real Public Health Problem. Int J Environ Res Public Health 2020; 17. DOI:10.3390/ijerph17145014.

Holick MF. Sunlight, uv radiation, vitamin d, and skin cancer: How much sunlight do we need? In: Advances in Experimental Medicine and Biology. Springer, 2020: 19–36.

Lindqvist PG. On the relationship between sun exposure and all-cause mortality. In: Advances in Experimental Medicine and Biology. Springer, 2020: 115–22.

Lee HJ, Kim CO, Lee DC. Association between Daily Sunlight Exposure and Fractures in Older Korean Adults with Osteoporosis: A Nationwide Population-Based Cross-Sectional Study. Yonsei Med J 2021; 62: 593–9.

Kopiczko A. Determinants of bone health in adults Polish women: The influence of physical activity, nutrition, sun exposure and biological factors. PLoS One 2020; 15: e0238127.

Thompson MJW, Aitken DA, Otahal P, Cicolini J, Winzenberg TM, Jones G. The relationship between cumulative lifetime ultraviolet radiation exposure, bone mineral density, falls risk and fractures in older adults. Osteoporosis International 2017; 28: 2061–8.

Cheng J, Meng S, Lee J, Kwak HB, Liu Y. Effects of walking and sun exposure on bone density and balance in elderly with osteopenia. J Bone Miner Metab 2022; 40: 528–34.

Cui Y, Gong Q, Huang C, et al. The relationship between sunlight exposure duration and depressive symptoms: A cross-sectional study on elderly Chinese women. PLoS One 2021; 16: e0254856.

Luo C-W, Chen S-P, Chiang C-Y, et al. Association between Ultraviolet B Exposure Levels and Depression in Taiwanese Adults: A Nested Case-Control Study. Int J Environ Res Public Health 2022; 19. DOI:10.3390/ijerph19116846.

Baggerly CA, Cuomo RE, French CB, et al. Sunlight and Vitamin D: Necessary for Public Health. J Am Coll Nutr 2015; 34: 359–65.

Wright F, Weller RB. Risks and benefits of UV radiation in older people: More of a friend than a foe? Maturitas. 2015; 81: 425–31.

van der Rhee HJ, de Vries E, Coebergh JW. Regular sun exposure benefits health. Med Hypotheses 2016; 97: 34–7.

Webb AR, Engelsen O. Ultraviolet exposure scenarios: Balancing risks of erythema and benefits of cutaneous vitamin d synthesis. In: Advances in Experimental Medicine and Biology. Springer, 2020: 387–405.

Patra V, Gallais Sérézal I, Wolf P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020; 12. DOI:10.3390/nu12061795.

紫外線に関するデータ. 国土交通省 気象庁. https://www.data.jma.go.jp/gmd/env/uvhp/info_uv.html (accessed May 29, 2024).

INTERSUN – The global UV Project: A guide and compendium. World Health Organization, 2003 https://www.who.int/publications/i/item/intersunguide (accessed May 29, 2024).

Liu J, Zhang W. The influence of the environment and clothing on human exposure to ultraviolet light. PLoS One 2015; 10: e0124758.

Jansen R, Wang SQ, Burnett M, Osterwalder U, Lim HW. Photoprotection: Part I. Photoprotection by naturally occurring, physical, and systemic agents. J Am Acad Dermatol. 2013; 69: 853.e1-853.e12.

Calbó J, Pagès D, González J-A. Empirical studies of cloud effects on UV radiation: A review. Reviews of Geophysics 2005; 43. DOI:10.1029/2004RG000155.

Díaz-Guerra L, Verdaguer D, Gispert M, et al. Effects of UV radiation and rainfall reduction on leaf and soil parameters related to C and N cycles of a Mediterranean shrubland before and after a controlled fire. Plant Soil 2018; 424: 503–24.

Kovačić J, Wittlich M, John SM, Macan J. Personal ultraviolet radiation dosimetry and its relationship with environmental data: A longitudinal pilot study in Croatian construction workers. J Photochem Photobiol B 2020; 207. DOI:10.1016/j.jphotobiol.2020.111866.

Rungananchai C, Silpa-archa N, Wongpraparut C, Suiwongsa B, Sangveraphunsiri V, Manuskiatti W. Sunscreen application to the face persists beyond 2 hours in indoor workers: an open-label trial. Journal of Dermatological Treatment 2019; 30: 483–6.

ISO 24444:2019/Amd 1:2022 Cosmetics — Sun protection test methods — In vivo determination of the sun protection factor (SPF) — Amendment 1. International Organization for Standardization. 2022; published online March. https://www.iso.org/standard/82298.html (accessed May 5, 2023).

SPF測定法基準. 日本化粧品工業会. https://www.jcia.org/user/business/guideline/spf (accessed May 5, 2023).

ISO 24442:2022 Cosmetics — Sun protection test methods — In vivo determination of sunscreen UVA protection. International Organization for Standardization. 2022; published online June. https://www.iso.org/standard/75496.html (accessed May 5, 2023).

UVA防止効果測定法基準. 日本化粧品工業会. https://www.jcia.org/user/business/guideline/uva (accessed May 5, 2023).

Wulf HC, Stender IM, Lock-Andersen J. Sunscreens used at the beach do not protect against erythema: A new definition of SPF is proposed. Photodermatol Photoimmunol Photomed 1997; 13: 129–32.

Kim SM, Oh BH, Lee YW, Choe YB, Ahn KJ. The relation between the amount of sunscreen applied and the sun protection factor in Asian skin. J Am Acad Dermatol 2010; 62: 218–22.

Liu W, Wang X, Lai W, et al. Sunburn protection as a function of sunscreen application thickness differs between high and low SPFs. 2012.

Passeron T, Lim HW, Goh C-L, et al. Photoprotection according to skin phototype and dermatoses: practical recommendations from an expert panel. J Eur Acad Dermatol Venereol 2021; 35: 1460–9.

Kobwanthanakun W, Silpa-Archa N, Wongpraparut C, Pruksaekanan C, Manuskiatti W. An evaluation of the course of facial sunscreen coverage and sustainability over an 8-hour workday among outdoor workers. Health Sci Rep 2021; 4: e350.

Maria Beyer D, Faurschou A, Alshede Philipsen P, Hoedersdal M, Christian Wulf H. Sun protection factor persistence on human skin during a day without physical activity or ultraviolet exposure. Photodermatol Photoimmunol Photomed 2010; 26: 22–7.

Draelos ZD. Degradation and migration of facial foundations. J Am Acad Dermatol 2001; 45: 542–3.

Hexsel CL, Bangert SD, Hebert AA, Lim HW. Current sunscreen issues: 2007 Food and Drug Administration sunscreen labelling recommendations and combination sunscreen/insect repellent products. J Am Acad Dermatol. 2008; 59: 316–23.

Ouyang H, Meyer K, Maitra P, et al. Realistic Sunscreen Durability: A Randomized, Double-blinded, Controlled Clinical Study. J Drugs Dermatol 2018; 17: 116–7.

De Gálvez MV, Aguilera J, Bernabõ JL, Sánchez-Roldán C, Herrera-Ceballos E. Human Hair as a Natural Sun Protection Agent: A Quantitative Study. Photochem Photobiol 2015; 91: 966–70.

Kullavanijaya P, Lim HW. Photoprotection. J Am Acad Dermatol. 2005; 52: 937–58.

Utrillas MP, Martínez-Lozano JA, Nuñ Ez M. Ultraviolet Radiation Protection by a Beach Umbrella. Photochem Photobiol 2010; 86: 449–56.

Ou-Yang H, Shyr T. Sun protection by umbrellas and walls. Photochem Photobiol Sci 2017; 16: 1537–45.

Davis S, Capjack L, Kerr N, Fedosejevs R. Clothing as protection from ultraviolet radiation: which fabric is most effective? 1997.

Adam J. Sun-Protective Clothing. 1998.

Gambichler T, Altmeyer P, Hoffmann K. Role of Clothes in Sun Protection. Recent Results in Cancer Research 2002; 160: 15–25.

Wang SQ, Kopf AW, Marx J, Bogdan A, Polsky D, Bart RS. Reduction of ultraviolet transmission through cotton T-shirt fabrics with low ultraviolet protection by various laundering methods and dyeing: Clinical implications. J Am Acad Dermatol 2001; 44: 767–74.

Hoffmann K, Laperre J, Avermaete A, Altmeyer P, Gambichler T. Defined UV Protection by Apparel Textiles. 2001.

Parisi A V, Willey A, Kimlin MG, Wong JC. Penetration of solar erythemal UV radiation in the shade of two common Australian trees. Health Phys 1999; 76: 682–6.

Parisi A V, Kimlin MG, Wong JC, Wilson M. Personal exposure distribution of solar erythemal ultraviolet radiation in tree shade over summer. Phys Med Biol 2000; 45: 349–56.

Parisi A V., Kimlin MG, Wong JCF, Wilson M. Solar ultraviolet exposures at ground level in tree shade during summer in south east Queensland. Int J Environ Health Res 2001; 11: 117–27.

Turnbull DJ, Parisi A V. S pectral UV in public shade settings. 2003 www.elsevier.com/locate/jphotobiol.

Wai K-M, Yu PKN, Lam K-S. Reduction of Solar UV Radiation Due to Urban High-Rise Buildings–A Coupled Modelling Study. PLoS One 2015; 10: e0135562.

Libon F, Courtois J, Le Goff C, et al. Sunscreens block cutaneous vitamin D production with only a minimal effect on circulating 25-hydroxyvitamin D. Arch Osteoporos 2017; 12. DOI:10.1007/s11657-017-0361-0.

Neale RE, Khan SR, Lucas RM, Waterhouse M, Whiteman DC, Olsen CM. The effect of sunscreen on vitamin D: a review. British Journal of Dermatology. 2019; 181: 907–15.

習慣⑧ 口腔ケアーむし歯・歯周病をできるだけ減らす

Chapple ILC, Bouchard P, Cagetti MG, et al. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J Clin Periodontol 2017; 44: S39–51.

Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global epidemiology of dental caries and severe periodontitis – a comprehensive review. J Clin Periodontol 2017; 44 Suppl 18: S94–105.

TOOTH DECAY AND GUM DISEASE Recommendations for the public. European Federation of Periodontology. https://www.efp.org/fileadmin/uploads/efp/Documents/Campaigns/Perio_and_Caries/Recommendations/Guideline04_Public.pdf (accessed May 29, 2024).

Gerritsen AE, Allen PF, Witter DJ, Bronkhorst EM, Creugers NHJ. Tooth loss and oral health-related quality of life: a systematic review and meta-analysis. Health Qual Life Outcomes 2010; 8: 126.

Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017; 3. DOI:10.1038/nrdp.2017.38.

Humphrey LL, Fu R, Buckley DI, Freeman M, Helfand M. Periodontal disease and coronary heart disease incidence: a systematic review and meta-analysis. J Gen Intern Med 2008; 23: 2079–86.

Sanz M, Del Castillo AM, Jepsen S, et al. Periodontitis and Cardiovascular Diseases. Consensus Report. Glob Heart 2020; 15: 1.

Wu C-Z, Yuan Y-H, Liu H-H, et al. Epidemiologic relationship between periodontitis and type 2 diabetes mellitus. BMC Oral Health 2020; 20: 204.

Salhi L, Reners M. Update on the Bidirectional Link Between Diabetes and Periodontitis. In: Advances in Experimental Medicine and Biology. Springer, 2022: 231–40.

Del Pinto R, Pietropaoli D, Munoz-Aguilera E, et al. Periodontitis and Hypertension: Is the Association Causal? High Blood Pressure and Cardiovascular Prevention. 2020; 27: 281–9.

Muñoz Aguilera E, Suvan J, Buti J, et al. Periodontitis is associated with hypertension: A systematic review and meta-analysis. Cardiovasc Res. 2020; 116: 28–39.

Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur Heart J 2019; 40: 3459–70.

Nwizu N, Wactawski-Wende J, Genco RJ. Periodontal disease and cancer: Epidemiologic studies and possible mechanisms. Periodontol 2000 2020; 83: 213–33.

Ray RR. Periodontitis: An Oral Disease with Severe Consequences. Appl Biochem Biotechnol. 2023; 195: 17–32.

令和4年⻭科疾患実態調査 厚⽣労働省 https://www.mhlw.go.jp/toukei/list/dl/62-17b_r04.pdf(accessed May 29, 2024).

Lagerweij M, Van Loveren C. Chapter 7: Sugar and Dental Caries. In: Monographs in Oral Science. S. Karger AG, 2020: 68–76.

Mukouyama C, Koike Y, Hirohara T. Transitional Changes in the Prevalence of Dental Caries in Children and Preventive Strategies: A Review of Nationwide Annual Surveys in Japan. Oral Health Prev Dent 2018; 16: 107–11.

Hancock S, Zinn C, Schofield G. The consumption of processed sugar- and starch-containing foods, and dental caries: a systematic review. Eur J Oral Sci. 2020; 128: 467–75.

Sheiham A, James WPT. A reappraisal of the quantitative relationship between sugar intake and dental caries: the need for new criteria for developing goals for sugar intake. BMC Public Health 2014; 14: 863.

Sheiham A, James WPT. A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption. Public Health Nutr 2014; 17: 2176–84.

Bernabé E, Vehkalahti MM, Sheiham A, Lundqvist A, Suominen AL. The Shape of the Dose-Response Relationship between Sugars and Caries in Adults. J Dent Res 2016; 95: 167–72.

Moynihan P. Sugars and Dental Caries: Evidence for Setting a Recommended Threshold for Intake. Adv Nutr 2016; 7: 149–56.

Guideline: sugars intake for adults and children. World Health Organization. 2015; published online March 4. https://www.who.int/publications/i/item/9789241549028 (accessed May 29, 2024).

mouthhealthy ADA https://www.mouthhealthy.org/(accessed May 29, 2024).

Glenny A-M, Walsh T, Iwasaki M, et al. Development of Tooth Brushing Recommendations Through Professional Consensus. Int Dent J 2024; 74: 526–35.

GUIDELINES FOR EFFECTIVE PREVENTION OF PERIODONTAL DISEASES. European Federation of Periodontology. https://www.bsperio.org.uk/assets/downloads/Prevention-of-periodontal-diseases-patient-public-guidance.pdf (accessed May 29, 2024).

Guidance Delivering better oral health: an evidence-based toolkit for prevention. GOV.UK. https://www.gov.uk/government/publications/delivering-better-oral-health-an-evidence-based-toolkit-for-prevention (accessed May 29, 2024).

Dawes C. Salivary flow patterns and the health of hard and soft oral tissues. J Am Dent Assoc 2008; 139 Suppl: 18S-24S.

Davies RM, Davies GM, Ellwood RP, Kay EJ. Prevention. Part 4: Toothbrushing : What advice should be given to patients? Br Dent J. 2003; 195: 135–41.

Choi S, Park KH, Cheong Y, Moon SW, Park YG, Park HK. Potential effects of tooth-brushing on human dentin wear following exposure to acidic soft drinks. J Microsc 2012; 247: 176–85.

Lussi A, Lussi J, Carvalho TS, Cvikl B. Toothbrushing after an erosive attack: Will waiting avoid tooth wear? Eur J Oral Sci 2014; 122: 353–9.

Hong D wei, Lin X jiao, Wiegand A, Yu H. Does delayed toothbrushing after the consumption of erosive foodstuffs or beverages decrease erosive tooth wear? A systematic review and meta-analysis. Clin Oral Investig. 2020; 24: 4169–83.

「食後30分間は歯みがきを避けること」についての見解 . 2013 http://www.hozon.or.jp/member/statement/file/opinion_20131211.pdf (accessed May 29, 2024).

フッ化物応用委員会. 日本口腔衛生学会自由集会4「食後30分間、ブラッシングを避けることの是非」の討論要旨. 一般社団法人 日本口腔衛生学会 2013; published online Aug. https://www.kokuhoken.or.jp/jsdh/meeting/file/meet_62_meeting4.pdf (accessed May 29, 2024).

Erosion: What You Eat and Drink Can Impact Teeth. American Dental Association. https://www.mouthhealthy.org/all-topics-a-z/dietary-acids-and-your-teeth (accessed May 29, 2024).

Seneviratne CJ, Zhang CF, Samaranayake LP. Dental plaque biofilm in oral health and disease. Chin J Dent Res 2011; 14: 87–94.

Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018; 16: 745–59.

Figuero E, Nóbrega DF, García-Gargallo M, Tenuta LMA, Herrera D, Carvalho JC. Mechanical and chemical plaque control in the simultaneous management of gingivitis and caries: a systematic review. J Clin Periodontol 2017; 44 Suppl 18: S116–34.

Zimmermann H, Zimmermann N, Hagenfeld D, Veile A, Kim TS, Becher H. Is frequency of tooth brushing a risk factor for periodontitis? A systematic review and meta-analysis. Community Dent Oral Epidemiol. 2015; 43: 116–27.

Kumar S, Tadakamadla J, Johnson NW. Effect of toothbrushing frequency on incidence and increment of dental caries: A systematic review and meta-analysis. J Dent Res. 2016; 95: 1230–6.

Islam ZU, Shaikh A, Fida M. Plaque index in multi-bracket fixed appliances. J Coll Physicians Surg Pak 2014; 24: 791–5.

Creeth JE, Gallagher A, Sowinski J, et al. The Effect of Brushing Time and Dentifrice on Dental Plaque Removal in vivo. 2009.

Koretsi V, Klinke R, Herreiner P, Proff P, Kirschneck C. Duration of toothbrushing with fixed appliances: a randomized crossover clinical trial. Eur J Orthod 2022; 44: 252–7.

Williams K, Ferrante A, Dockter K, Haun J, Biesbrock AR, Bartizek RD. One- and 3-Minute Plaque Removal by a Battery-Powered Versus a Manual Toothbrush. J Periodontol 2004; 75: 1107–13.

Slot DE, Wiggelinkhuizen L, Rosema NAM, Van der Weijden GA. The efficacy of manual toothbrushes following a brushing exercise: a systematic review. Int J Dent Hyg 2012; 10: 187–97.

Rosema NAM, Slot DE, van Palenstein Helderman WH, Wiggelinkhuizen L, Van der Weijden GA. The efficacy of powered toothbrushes following a brushing exercise: A systematic review. Int J Dent Hyg 2016; 14: 29–41.

Brushing Your Teeth. American Dental Association. https://www.mouthhealthy.org/all-topics-a-z/brushing-your-teeth (accessed May 29, 2024).

歯の学校 Vol.72 歯みがき い・ろ・は. 日本歯科医師会. 2021. https://www.jda.or.jp/hanogakko/vol72/iroha.html (accessed May 29, 2024).

Zanatta FB, Bergoli AD, Werle SB, Antoniazzi RP. Biofilm removal and gingival abrasion with medium and soft toothbrushes. Oral Health Prev Dent 2011; 9: 177–83.

Zimmer S, Öztürk M, Barthel CR, Bizhang M, Jordan RA. Cleaning Efficacy and Soft Tissue Trauma After Use of Manual Toothbrushes With Different Bristle Stiffness. J Periodontol 2011; 82: 267–71.

Saffarzadeh A, Khodarahmi N, Mohammadi M. Evaluation of the Effect of Ultra-Soft Toothbrushes with Different Commercial Brands on Plaque and Bleeding Indices. J Dent (Shiraz) 2021; 22: 53–9.

Langa GPJ, Muniz FWMG, Wagner TP, Silva CF e., Rösing CK. ANTI-PLAQUE AND ANTI-GINGIVITIS EFFICACY OF DIFFERENT BRISTLE STIFFNESS AND END-SHAPE TOOTHBRUSHES ON INTERPROXIMAL SURFACES: A SYSTEMATIC REVIEW WITH META-ANALYSIS. Journal of Evidence-Based Dental Practice. 2021; 21. DOI:10.1016/j.jebdp.2021.101548.

Ranzan N, Muniz FWMG, Rösing CK. Are bristle stiffness and bristle end-shape related to adverse effects on soft tissues during toothbrushing? A systematic review. Int Dent J 2019; 69: 171–82.

Hamza B, Tanner M, Körner P, Attin T, Wegehaupt FJ. Effect of toothbrush bristle stiffness and toothbrushing force on the abrasive dentine wear. Int J Dent Hyg 2021; 19: 355–9.

Souza C de MS, Sakae LO, Carneiro PMA, Esteves RA, Scaramucci T. Interplay between different manual toothbrushes and brushing loads on erosive tooth wear. J Dent 2021; 105. DOI:10.1016/j.jdent.2020.103577.

Romitti D, Fagundes A V., Angst PDM, Gomes MS, Gomes SC, Oppermann R V. The use of medium bristle toothbrushes is associated with the incidence of gingival fissures. Clin Oral Investig 2022; 26: 1657–66.

Afonso Rabelo Buzalaf Juliano Pelim Pessan Heitor Marques Honório Jacob Martien ten Cate M. Impact of Fluoride in the Prevention of Caries and Erosion Buzalaf MAR (ed): Fluoride and the Oral Mechanisms of Action of Fluoride for Caries Control. 2011.

Rošin-Grget K, Peroš K, Sutej I, Bašić K. The cariostatic mechanisms of fluoride. Acta Med Acad. 2013; 42: 179–88.

Barlow AP, Sufi F, Mason SC. Evaluation of different fluoridated dentifrice formulations using an in situ erosion remineralization model. J Clin Dent 2009; 20: 192–8.

Faller R V, Eversole SL, Saunders-Burkhardt K. Protective benefits of a stabilised stannous-containing fluoride dentifrice against erosive acid damage. Int Dent J 2014; 64 Suppl 1: 29–34.

Walsh T, Worthington H V, Glenny A-M, Marinho VC, Jeroncic A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst Rev 2019; 3: CD007868.

一般社団法人 日本口腔衛生学会, 公益社団法人 日本小児歯科学会, 特定非営利活動法人 日本歯科保存学会, 一般社団法人 日本老年歯科医学会. 4学会合同のフッ化物配合歯磨剤の推奨される利用方法. 2023 https://www.kokuhoken.or.jp/jsdh/news/2023/news_230106.pdf (accessed May 29, 2024).

Essalat M, Morrison D, Kak S, et al. A naturalistic study of brushing patterns using powered toothbrushes. PLoS One 2022; 17: e0263638.

Ganss C, Duran R, Winterfeld T, Schlueter N. Tooth brushing motion patterns with manual and powered toothbrushes-a randomised video observation study. Clin Oral Investig 2018; 22: 715–20.

Brushing Techniques. European Journal of Molecular & Clinical Medicine 2020; 7: 6601–11.

Brushing Your Teeth. American Dental Association. https://www.mouthhealthy.org/all-topics-a-z/brushing-your-teeth (accessed May 29, 2024).

Worthington H V, MacDonald L, Poklepovic Pericic T, et al. Home use of interdental cleaning devices, in addition to toothbrushing, for preventing and controlling periodontal diseases and dental caries. Cochrane Database Syst Rev 2019; 4: CD012018.

Gondhalekar R, Jose Richard KM, Jayachandra MG, Aslam S, Reddy VN, Barabde AS. Effect of tongue cleaning methods and oral mutans streptococci level. Journal of Contemporary Dental Practice 2013; 14: 119–22.

Matsui M, Chosa N, Shimoyama Y, Minami K, Kimura S, Kishi M. Effects of tongue cleaning on bacterial flora in tongue coating and dental plaque: a crossover study. BMC Oral Health 2014; 14: 4.

Van der Sleen MI, Slot DE, Van Trijffel E, Winkel EG, Van der Weijden GA. Effectiveness of mechanical tongue cleaning on breath odour and tongue coating: a systematic review. Int J Dent Hyg 2010; 8: 258–68.

Kuo Y-W, Yen M, Fetzer S, Lee J-D. Toothbrushing versus toothbrushing plus tongue cleaning in reducing halitosis and tongue coating: a systematic review and meta-analysis. Nurs Res 2013; 62: 422–9.

Bordas A, McNab R, Staples AM, Bowman J, Kanapka J, Bosma MP. Impact of different tongue cleaning methods on the bacterial load of the tongue dorsum. Arch Oral Biol 2008; 53 Suppl 1: S13-8.

Acar B, Berker E, Tan Ç, İlarslan YD, Tekçiçek M, Tezcan İ. Effects of oral prophylaxis including tongue cleaning on halitosis and gingival inflammation in gingivitis patients—a randomized controlled clinical trial. Clin Oral Investig 2019; 23: 1829–36.

図⑲出典

Gonçalves AC de S, Martins MCN, Paula BL de, Weckwerth PH, Franzolin S de OB, Silveira EMV. A new technique for tongue brushing and halitosis reduction: the X technique. J Appl Oral Sci 2019; 27: e20180331.(https://creativecommons.org/licenses/by/4.0/)

習慣⑨ 温度対策ー「気温」を意識して、暮らす

Tansey EA, Johnson CD. Recent advances in thermoregulation. Adv Physiol Educ 2015; 39: 139–48.

Leon LR, Bouchama A. Heat stroke. Compr Physiol 2015; 5: 611–47.

Gauer R, Meyers BK. Heat-Related Illnesses. Am Fam Physician 2019; 99: 482–9.

Fujimoto Y, Matsuyama T, Morita S, et al. Indoor Versus Outdoor Occurrence in Mortality of Accidental Hypothermia in Japan: The J-Point Registry. Ther Hypothermia Temp Manag 2020; 10: 159–64.

Takauji S, Hifumi T, Saijo Y, et al. Accidental hypothermia: Factors related to a prolonged hospital stay – A nationwide observational study in Japan. American Journal of Emergency Medicine 2021; 47: 169–75.

Takauji S, Hifumi T, Saijo Y, et al. Accidental hypothermia: characteristics, outcomes, and prognostic factors-A nationwide observational study in Japan (Hypothermia study 2018 and 2019). Acute medicine & surgery 2021; 8: e694.

Epstein Y, Moran DS. Thermal comfort and the heat stress indices. Ind Health 2006; 44: 388–98.

周辺地域の熱環境改善とは. 環境省 https://www.env.go.jp/air/report/h16-13/02.pdf (accessed May 5, 2023).

Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. Lancet 1997; 349: 1341–6.

Asseng S, Spänkuch D, Hernandez-Ochoa IM, Laporta J. The upper temperature thresholds of life. Lancet Planet Health 2021; 5: e378–85.

WHO Housing and health guidelines. 2018 https://www.who.int/publications/i/item/9789241550376 (accessed May 29, 2024).

Asseng S, Spänkuch D, Hernandez-Ochoa IM, Laporta J. The upper temperature thresholds of life. Lancet Planet Health 2021; 5: e378–85.

Malik A, Bongers C, McBain B, et al. The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: an analysis of energy demand and associated greenhouse gas emissions. Lancet Planet Health 2022; 6: e301–9.

Morris NB, Jay O, Flouris AD, et al. Sustainable solutions to mitigate occupational heat strain – an umbrella review of physiological effects and global health perspectives. Environ Health 2020; 19: 95.

Périard JD, Travers GJS, Racinais S, Sawka MN. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci 2016; 196: 52–62.

Adams WM, Hosokawa Y, Casa DJ, et al. Roundtable on Preseason Heat Safety in Secondary School Athletics: Heat Acclimatization. J Athl Train 2021; 56: 352–61.

熱中症環境保健マニュアル 2022. 環境省. 2022; published online March. https://www.wbgt.env.go.jp/heatillness_manual.php (accessed May 29, 2024).

職場における熱中症予防対策マニュアル. 2021 https://www.mhlw.go.jp/content/11200000/000636115.pdf (accessed May 29, 2024).

夏季のイベントにおける熱中症対策ガイドライン2020. 環境省. 2020; published online March. https://www.wbgt.env.go.jp/pdf/gline/heatillness_guideline_full.pdf (accessed May 29, 2024).

Castellani JW, Young AJ. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton Neurosci 2016; 196: 63–74.

Yurkevicius BR, Alba BK, Seeley AD, Castellani JW. Human cold habituation: Physiology, timeline, and modifiers. Temperature (Austin) 2022; 9: 122–57.

Thermal Environmental Conditions for Human Occupancy. Approved American National Standard, 2020 https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/standards%20addenda/55_2017_d_20200731.pdf (accessed May 5, 2023).

家庭でできる節電アクション. 環境省. https://ondankataisaku.env.go.jp/coolchoice/setsuden/home/saving03.html (accessed May 29, 2024).

WARMBIZ ウォームビズ(WARMBIZ)とは. 環境省. https://ondankataisaku.env.go.jp/coolchoice/warmbiz/about/ (accessed May 29, 2024).

COOLBIZ. 環境省. https://ondankataisaku.env.go.jp/coolchoice/coolbiz/ (accessed May 29, 2024).

WARMBIZ. 環境省 https://ondankataisaku.env.go.jp/coolchoice/warmbiz/ (accessed May 29, 2024).

建築物における衛生的環境の確保に関する法律施行規則(昭和四十六年厚生省令第二号)https://elaws.e-gov.go.jp/document?lawid=346M50000100002_20231227_505M60000100165 (accessed May 29, 2024).

熱中症特別警戒情報(熱中症特別警戒アラート)・熱中症警戒情報(熱中症警戒アラート) 環境省 https://www.wbgt.env.go.jp/alert.php(accessed May 29, 2024).

日本スポーツ協会『スポーツ活動中の熱中症予防ガイドブック 第5版 https://www.japan-sports.or.jp/Portals/0/data/supoken/doc/heatstroke/heatstroke_0531.pdf(accessed May 29, 2024).

日常生活における熱中症予防指針 Ver.4 日本生気象学会 https://seikishou.jp/cms/wp-content/uploads/20220523-v4.pdf(accessed May 29, 2024).

習慣⑩ 予防接種ー状況に応じて、接種を考える

Ozisik L, Tanriover MD, Rigby S, Unal S. ADVICE for a healthier life: Adult Vaccination Campaign in Europe. Eur J Intern Med. 2016; 33: 14–20.

Brenzel L, Wolfson LJ, Fox-Rushby J, Miller M, Halsey NA. Vaccine-preventable Diseases. 2006.

予防接種情報 予防接種に関する基本的な計画. 厚生労働省. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/kekkaku-kansenshou/kihonteki_keikaku/index.html (accessed May 29, 2024).

予防接種法(昭和二十三年法律第六十八号). https://elaws.e-gov.go.jp/document?lawid=323AC0000000068 (accessed May 29, 2024).

図⑳出典

予防接種情報. 厚生労働省. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/kekkaku-kansenshou/yobou-sesshu/index.html (accessed May 29, 2024).

麻しんに関する特定感染症予防指針, 平成31年4月19日一部改正・適用. 厚生労働省, 2019 https://www.mhlw.go.jp/content/000503060.pdf (accessed May 29, 2024).

風しんに関する特定感染症予防指針, 平成29年12月21日一部改正・平成30年1月1日適用. 厚生労働省, 2017 https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/0000186690.pdf (accessed May 29, 2024).

日本脳炎ワクチンに関するQ&A, 平成28年3月改訂版. 厚生労働省, 2016 https://www.mhlw.go.jp/bunya/kenkou/kekkaku-kansenshou21/dl/nouen_qa.pdf (accessed May 29, 2024).

日本小児科学会が推奨する予防接種スケジュール. 日本小児科学会. https://www.jpeds.or.jp/modules/activity/index.php?content_id=138 (accessed May 29, 2024).

日本小児科学会の「知っておきたいワクチン情報」(日本版Vaccine information statement(VIS)). 日本小児科学会. https://www.jpeds.or.jp/modules/activity/index.php?content_id=263 (accessed May 29, 2024).

赤ちゃんとお母さんの感染予防対策5ヶ条について. 2013年5月29日改訂 日本周産期・新生児医学会, 日本小児科学会, 日本産科婦人科学会, 日本産婦人科医会. https://www.jspnm.com/topics/data/topics20130515%EF%BC%A1.pdf (accessed May 29, 2024).

日本産科婦人科学会, 日本産婦人科医会, editors. 産婦人科診療ガイドラインー産科編 2020. 日本産婦人科学会事務局, 2020 https://www.jsog.or.jp/activity/pdf/gl_sanka_2020.pdf (accessed May 29, 2024).

砂川 富正, 河上 祥一, 神谷  元, 八幡裕一郎, 小林 祐介, 土橋 酉紀. 妊婦における百日咳含有ワクチン接種の知識・態度と ワクチン接種行動に関する研究報告書. https://mhlw-grants.niph.go.jp/system/files/2016/162111/201617016A_upload/201617016A0016.pdf (accessed May 29, 2024).

海外渡航のためのワクチン(予防接種). 厚生労働省検疫所FORTH. https://www.forth.go.jp/moreinfo/topics/useful_vaccination.html (accessed May 29, 2024).

第14回厚生科学審議会予防接種・ワクチン分科会予防接種基本方針部会ワクチン評価に関する小委員会 議事録. 厚生労働省. https://www.mhlw.go.jp/stf/newpage_08371.html (accessed May 29, 2024).

厚生科学審議会 予防接種・ワクチン分科会 予防接種基本方針部会, ワクチン評価に関する小委員会. 百日咳による乳児の重症化予防を目的とした、百日せきワクチンを含む混合ワクチンの接種開始時期の前倒しについての議論のとりまとめ . 2022 https://www.mhlw.go.jp/stf/newpage_28145.html (accessed May 29, 2024).

医療関係者のためのワクチンガイドライン第3版 一般社団法人 日本環境感染学会 http://www.kankyokansen.org/uploads/uploads/files/jsipc/vaccine-guideline_03(3).pdf(accessed May 29, 2024).

10の習慣がもたらす「付加価値」とは

Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 2017; 16: 624–33.

Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andrés V. Biological Versus Chronological Aging: JACC Focus Seminar. J Am Coll Cardiol 2020; 75: 919–30.

McPhee JS, French DP, Jackson D, Nazroo J, Pendleton N, Degens H. Physical activity in older age: perspectives for healthy ageing and frailty. Biogerontology 2016; 17: 567–80.

Ni Lochlainn M, Cox NJ, Wilson T, et al. Nutrition and Frailty: Opportunities for Prevention and Treatment. Nutrients 2021; 13. DOI:10.3390/nu13072349.

Curtis E, Litwic A, Cooper C, Dennison E. Determinants of Muscle and Bone Aging. J Cell Physiol 2015; 230: 2618–25.

Distefano G, Goodpaster BH. Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harb Perspect Med 2018; 8. DOI:10.1101/cshperspect.a029785.

Rossman MJ, LaRocca TJ, Martens CR, Seals DR. Healthy lifestyle-based approaches for successful vascular aging. J Appl Physiol (1985) 2018; 125: 1888–900.

Wong QYA, Chew FT. Defining skin aging and its risk factors: a systematic review and meta-analysis. Sci Rep 2021; 11: 22075.

Nanzadsuren T, Myatav T, Dorjkhuu A, et al. Skin aging risk factors: A nationwide population study in Mongolia risk factors of skin aging. PLoS One 2022; 17: e0249506.

Hoogendijk EO, Afilalo J, Ensrud KE, Kowal P, Onder G, Fried LP. Frailty: implications for clinical practice and public health. The Lancet. 2019; 394: 1365–75.

Nascimento CM, Ingles M, Salvador-Pascual A, Cominetti MR, Gomez-Cabrera MC, Viña J. Sarcopenia, frailty and their prevention by exercise. Free Radic Biol Med. 2019; 132: 42–9.

Woolford SJ, Sohan O, Dennison EM, Cooper C, Patel HP. Approaches to the diagnosis and prevention of frailty. Aging Clin Exp Res 2020; 32: 1629–37.

Daskalopoulou C, Stubbs B, Kralj C, Koukounari A, Prince M, Prina AM. Physical activity and healthy ageing: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Res Rev 2017; 38: 6–17.

Daskalopoulou C, Stubbs B, Kralj C, Koukounari A, Prince M, Prina AM. Associations of smoking and alcohol consumption with healthy ageing: a systematic review and meta-analysis of longitudinal studies. BMJ Open 2018; 8: e019540.

Feng Z, Cramm JM, Nieboer AP. A healthy diet and physical activity are important to promote healthy ageing among older Chinese people. J Int Med Res 2019; 47: 6061–81.

Janssen I, Clarke AE, Carson V, et al. A systematic review of compositional data analysis studies examining associations between sleep, sedentary behaviour, and physical activity with health outcomes in adults. Appl Physiol Nutr Metab 2020; 45: S248–57.

Saunders TJ, McIsaac T, Douillette K, et al. Sedentary behaviour and health in adults: an overview of systematic reviews. Appl Physiol Nutr Metab 2020; 45: S197–217.

Chaput JP, Dutil C, Featherstone R, et al. Sleep timing, sleep consistency, and health in adults: a systematic review. Appl Physiol Nutr Metab 2020; 45: S232–47.

Chaput J-P, Dutil C, Featherstone R, et al. Sleep duration and health in adults: an overview of systematic reviews. Appl Physiol Nutr Metab 2020; 45: S218–31.

Yeung SSY, Kwan M, Woo J. Healthy Diet for Healthy Aging. Nutrients 2021; 13. DOI:10.3390/nu13124310.

Nie P, Li Y, Zhang N, Sun X, Xin B, Wang Y. The change and correlates of healthy ageing among Chinese older adults: findings from the China health and retirement longitudinal study. BMC Geriatr 2021; 21: 78.

Zhou Y-F, Song X-Y, Pan X-F, et al. Association Between Combined Lifestyle Factors and Healthy Ageing in Chinese Adults: The Singapore Chinese Health Study. J Gerontol A Biol Sci Med Sci 2021; 76: 1796–805.

Abud T, Kounidas G, Martin KR, Werth M, Cooper K, Myint PK. Determinants of healthy ageing: a systematic review of contemporary literature. Aging Clin Exp Res 2022; 34: 1215–23.

「10の習慣」にも限界はある。でもー

Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 2020; 582: 240–5.

Zhang L, Lu Q, Chang C. Epigenetics in Health and Disease. In: Advances in Experimental Medicine and Biology. Springer, 2020: 3–55.

Akter S, Goto A, Mizoue T. Smoking and the risk of type 2 diabetes in Japan: A systematic review and meta-analysis. J Epidemiol 2017; 27: 553–61.

Aredo J V, Luo SJ, Gardner RM, et al. Tobacco Smoking and Risk of Second Primary Lung Cancer. J Thorac Oncol 2021; 16: 968–79.

Zheng Y, Manson JE, Yuan C, et al. Associations of Weight Gain From Early to Middle Adulthood With Major Health Outcomes Later in Life. JAMA 2017; 318: 255–69.

Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochem Med (Zagreb) 2019; 29: 030501.